Adelering

Van Wikipedia, de gratis encyclopedie

Der Adelering wird in der Zahlentheorie, einem Teilgebiet der Mathematik, definiert. Er steht im Zusammenhang mit der Klassenkörpertheorie. Der Adelering ist das restringierte Produkt aller Vervollständigungen eines globalen Körpers. Damit enthält er alle diese Vervollständigungen.

Der Adelering ist ein selbstdualer, topologischer Ring, welcher auf Grundlage eines globalen Körpers konstruiert wird. Er ermöglicht eine besonders elegante Darstellung des Artinschen Reziprozitätsgesetzes.

Die Idelklassengruppe, welche der Quotient aus den Einheiten des Adelerings und den Einheiten des Körpers ist, stellt ein zentrales Objekt in der Klassenkörpertheorie dar.

Notation: Im Folgenden ist ein globaler Körper. Das bedeutet, dass entweder ein algebraischer Zahlkörper oder ein algebraischer Funktionenkörper positiver Charakteristik vom Transzendenzgrad 1 ist. Im ersten Fall bedeutet das, dass eine endliche Körpererweiterung ist, im zweiten Fall, dass eine endliche Körpererweiterung ist.

Im Folgenden bezeichnet eine Stelle von Die triviale Bewertung und der dazu korrespondierende triviale Betrag werden im kompletten Artikel ausgeschlossen. Es wird unterschieden zwischen endlichen (nicht-archimedischen) Stellen, welche als oder notiert werden, und unendlichen (archimedischen) Stellen, welche als notiert werden.

Im Folgenden bezeichne die endliche Menge der unendlichen Stellen von Wir schreiben für eine endliche Teilmenge der Stellenmenge von welche enthält. Sei die Vervollständigung von nach einer Stelle Bei einer diskreten Bewertung bezeichne mit den zugehörigen diskreten Bewertungsring von und mit das maximale Ideal von Ist dieses ein Hauptideal, so schreibe für ein uniformisierendes Element. Der Leser sei weiterhin auf die eineindeutige Identifikation von Beträgen und Bewertungen eines Körpers hingewiesen bei Fixierung einer geeigneten Konstante Die Bewertung wird dem Betrag zugeordnet, welcher wie folgt definiert wird:

Umgekehrt wird dem Betrag die Bewertung zugeordnet, welche wie folgt definiert ist: für alle Diese Identifikation wird im Artikel laufend verwendet.

Im Artikel wird das restringierte Produkt mit notiert. Eine andere geläufige Notation dafür ist

Begriffserklärung[Bearbeiten | Quelltext bearbeiten]

In der lokalen Klassenkörpertheorie spielt die multiplikative Gruppe des lokalen Körpers eine wichtige Rolle. In der globalen Klassenkörpertheorie wird diese Rolle von der Idelklassengruppe übernommen. Der Begriff des Idels ist eine Abänderung des Idealbegriffs, wobei beide Begriffe in Beziehung zueinander stehen, siehe dazu den Satz über den Zusammenhang zwischen der Ideal- und der Idelklassengruppe. Der Idelbegriff wurde von dem französischen Mathematiker Claude Chevalley (1909–1984) unter dem Namen „ideal element“ (abgekürzt: id.el.) eingeführt. Der Begriff des Adels geht zurück auf die ursprüngliche Bezeichnung „additives Idel“. Bei der Aussprache von Adel liegt die Betonung auf der 2. Silbe.

Die Idee hinter dem Adelering ist es, dass man alle Vervollständigungen des globalen Körpers auf einmal betrachtet. Auf den ersten Blick scheint die Definition über das kartesische Produkt sinnvoll, jedoch wird der Adelering mit dem restringierten Produkt definiert, wie im nächsten Abschnitt erläutert wird. Dies hat mehrere Gründe:

  • Wenn man den globalen Körper in das Produkt über die einbettet, dann gilt für jedes : für fast alle ist also (vgl. globaler Körper). Die Terminologie „fast alle“ meint im gesamten Artikel immer „alle bis auf endlich viele“. Also ist sogar in das restringierte Produkt einbettbar.
  • Der Adelering wird dadurch zu einem lokalkompakten, topologischen Ring. Das unrestringierte Produkt hingegen ist nicht lokalkompakt. Daher ist auf dem unrestringierten Produkt keine Harmonische Analyse möglich.

Definition des Adelerings eines globalen Körpers K[Bearbeiten | Quelltext bearbeiten]

Die Menge der endlichen Adele eines globalen Körpers K[Bearbeiten | Quelltext bearbeiten]

Die Menge der endlichen Adele eines globalen Körpers geschrieben ist definiert als das restringierte Produkt der mit Restriktionsbedingung das heißt

Das bedeutet, dass die Menge der endlichen Adele alle Elemente der Form enthält, so dass für fast alle Die Addition und Multiplikation werden komponentenweise erklärt. Dadurch wird zu einem Ring. Wir installieren auf der Menge der endlichen Adele die restringierte Produkttopologie. Das ist diejenige Topologie, die von den sogenannten restringierten offenen Rechtecken erzeugt wird, welche folgende Form haben:

wobei eine endliche Teilmenge der Stellenmenge von ist, welche enthält und offen sind.

Bemerkung: In der deutschen Literatur wird auch der Name eingeschränktes direktes Produkt für das restringierte Produkt verwendet. Im Folgenden wird der Begriff restringiertes Produkt verwendet. Weiterhin wird im Folgenden endlicher Adelering von als Synonym für verwendet.

Der Adelering eines globalen Körpers K[Bearbeiten | Quelltext bearbeiten]

Der Adelering des globalen Körpers geschrieben ist definiert als das Produkt der Menge der endlichen Adele mit dem Produkt der endlich vielen Vervollständigungen nach den unendlichen Stellen. Diese sind oder und treten nur im algebraischen Zahlkörperfall auf. Damit erhalten wir also:

In Fall eines Funktionenkörpers ist die Menge der endlichen Adele gleich dem Adelering von Auf dem Adelering von wird eine Addition und Multiplikation jeweils komponentenweise erklärt. Dadurch wird zu einem Ring. Die Elemente von werden die Adele von genannt. Wir schreiben im Folgenden den Adelering als

obwohl dies kein restringiertes Produkt im eigentlichen Sinne ist. Im Folgenden wird nicht extra darauf hingewiesen, dass die unendlichen Stellen unrestringiert dem Produkt hinzugefügt werden.

Die Menge der S-Adele eines globalen Körpers K[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper und sei eine Teilmenge der Stellenmenge von Definiere die Menge der -Adele von als

Die unendlichen Stellen, sofern in enthalten, werden dabei ohne Restriktionsbedingung hinzugefügt. Definiere weiterhin

Es gilt dann

Der rationale Adelering 𝔸[Bearbeiten | Quelltext bearbeiten]

Wir betrachten den Spezialfall Zuerst überlegen wir uns, wie die Stellenmenge von aussieht: Der Satz von Ostrowski besagt, dass die Stellenmenge von mit identifiziert werden kann, wobei die Primzahl dabei die Äquivalenzklasse des -adischen Betrag repräsentiert und für die folgende Äquivalenzklasse von steht, wobei wie folgt definiert wird:

Als Nächstes stellen wir fest, dass die Vervollständigung nach den Stellen von gerade die Körper der p-adischen Zahlen für eine Stelle bzw. der Körper für die Stelle sind. Der zugehörige Ganzzahlring zum Körper ist Damit folgt, dass der endliche Adelering der rationalen Zahlen gleich

ist. Der ganze Adelering ist damit gleich

wofür wir auch verkürzt schreiben:

mit der Konvention

Unterschied zwischen restringierter und unrestringierter Produkttopologie[Bearbeiten | Quelltext bearbeiten]

Die Folge von Adelen in

konvergiert in der Produkttopologie gegen das Einsadel jedoch nicht in der restringierten Produkttopologie.

Beweis: Die Konvergenz in der Produkttopologie entspricht der koordinatenweisen Konvergenz. Diese ist trivial, da die Koordinatenfolgen stationär werden. Die Folge konvergiert nicht in der restringierten Produkttopologie, da für jedes Adel und für jedes restringierte offene Rechteck gilt: für und daher für alle Es folgt, dass für fast alle Hierbei stehen und für endliche Teilmengen der Stellenmenge. Dabei ist eine endliche Ausnahmemenge des Adels

Der Adelering trägt nicht die Teilraumtopologie der Produkttopologie, da ansonsten der Adelering keine lokalkompakte Gruppe ist, vgl. hierzu den Satz, dass der Adelering ein topologischer Ring ist.

Diagonale Einbettung des globalen Körpers in seinen Adelering[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper. Es gibt eine natürliche diagonale Einbettung von in seinen Adelering

Die Einbettung ist wohldefiniert, da für jedes gilt, dass für fast alle Sie ist injektiv, denn die Einbettung von in ist bereits injektiv für jedes Es folgt, dass als Untergruppe von aufgefasst werden kann. Man kann sogar als Unterring seines Adelerings auffassen. Die Elemente aus werden die Hauptadele von genannt.

Die Idelegruppe[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper. Die Einheitengruppe des Adelerings

mit der mittels der Inklusion durch die Produkttopologie auf erzeugten Teilraumtopologie, ist die sogenannte Idelegruppe von .

Alternative Definition des Adelerings eines Zahlkörpers[Bearbeiten | Quelltext bearbeiten]

Die pro-endliche Komplettierung der ganzen Zahlen[Bearbeiten | Quelltext bearbeiten]

Definiere

d. h. ist die pro-endliche Komplettierung der Ringe mit der partiellen Ordnung Die pro-endliche Komplettierung der ganzen Zahlen ist also der projektive Limes über die Ringe

Mit Hilfe des chinesischen Restsatzes kann gezeigt werden, dass die pro-endliche Komplettierung der ganzen Zahlen isomorph zum Produkt der ganzen -adischen Zahlen ist. Es gilt also

Alternative Definition des Adelerings eines Zahlkörpers[Bearbeiten | Quelltext bearbeiten]

Definiere nun den Ring (der ganzzahligen Adele)

Damit kann der Adelering über folgendermaßen dargestellt werden:

Dies ist ein algebraischer Isomorphismus. Für einen beliebigen algebraischen Zahlkörper gilt nun:

wobei wir die rechte Seite mit folgender Topologie versehen. Es gilt, dass wobei die rechte Seite insgesamt Summanden hat. Wir installieren auf der rechten Seite die Produkttopologie von und transportieren diese mit Hilfe des Isomorphismus auf

Beweis: Wir beweisen zunächst die Gleichung für Es ist also zu zeigen, dass Es gilt wobei man das „Ausmultiplizieren“ beim Tensorprodukt durch eine Betrachtung mit Basen einsieht. Die zweite Isomorphie folgt dadurch, dass -lineare Abbildungen bereits -linear sind. Offensichtlich reicht es zu zeigen, dass ist. Wir rechnen hierzu die universelle Eigenschaft des Tensorproduktes nach. Definiere eine -bilineare Abbildung via Diese Abbildung ist offensichtlich wohldefiniert, da nur endlich viele Primzahlen den Nenner von teilen. Die Abbildung ist -bilinear.

Sei nun ein weiterer -Modul mit einer -bilinearen Abbildung Zu zeigen ist, dass es genau eine -lineare Abbildung gibt, mit der Eigenschaft: Die Abbildung wird wie folgt definiert: Zu gegebenem existiert ein und ein sodass für alle gilt. Definiere dann Man mache sich klar, dass wohldefiniert ist, -linear und erfüllt. Weiterhin ist durch diese Eigenschaften bereits eindeutig festgelegt. Der allgemeine Fall kann ähnlich gezeigt werden und wird im folgenden Abschnitt noch allgemeiner bewiesen.

Der Adelering 𝔸L bei einer Körpererweiterung L/K[Bearbeiten | Quelltext bearbeiten]

Alternative Beschreibung des Adelerings 𝔸L im Fall L/K[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper und sei eine endliche Körpererweiterung. Ist ein algebraischer Zahlkörper, dann ist die Körpererweiterung separabel. Im Funktionenkörperfall kann sie ebenfalls als separabel angenommen werden, vgl. Weil (1967), S. 48f. Damit ist wieder ein globaler Körper und ist definiert. Für eine Stelle von und eine Stelle von definiere

falls der Betrag eingeschränkt auf in der Äquivalenzklasse von liegt. Man sagt, die Stelle liegt über der Stelle Definiere nun

Beachte, dass mit die Stellen von und mit die Stellen von bezeichnet werden. Beachte weiterhin, dass beide Produkte endlich sind.

Bemerkung: Man kann in einbetten, falls über liegt. Dadurch kann man diagonal in einbetten und wird dadurch eine kommutative -Algebra vom Grad

Es gilt nun

Der Beweis beruht auf elementaren Eigenschaften restringierter Produkte.

Der Adelering von kann dabei wie folgt kanonisch in den Adelering von eingebettet werden: Dem Adel wird das Adel mit für zugeordnet. Deshalb kann als Untergruppe von aufgefasst werden. Ein Element liegt also genau dann in der Untergruppe wenn seine Komponenten für erfüllen und weiterhin für und für die gleiche Stelle von gilt.

Der Adelering 𝔸L als Tensorprodukt[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper und sei eine endliche Körpererweiterung. Dann gilt:

Dies ist ein algebraischer und topologischer Isomorphismus, wobei wir die Topologie des Tensorproduktes analog wie in dem Lemma über die alternative Definition des Adelerings eines Zahlkörpers konstruieren. Um dies zu tun, ist es wichtig, dass Mit der Hilfe dieses Isomorphismus, ist die Inklusion durch die Funktion

Darüber hinaus können die Hauptadele von mit einer Untergruppe der Hauptadele von identifiziert werden via der Abbildung

Beweis: Sei eine -Basis von Es gilt nun, dass

für fast alle vgl. Cassels (1967), S. 61.

Wir haben einen kanonischen Isomorphismus:

wobei die kanonische Einbettung ist und wie üblich gilt. Indem wir auf beiden Seiten das restringierte Produkt mit Restriktionsbedingung bilden, folgt die Behauptung:

Dieser Beweis findet sich in Cassels (1967), S. 65.

Korollar: Der Adelering von als additive Gruppe

Als additive Gruppe betrachtet gilt:

wobei die linke Seite insgesamt Summanden hat. Die Hauptadele von gehen dabei auf wobei hier als Teilmenge von aufgefasst wird. Die Summe hat dabei Summanden.

Definition des Adelerings eines K-Vektorraums E und einer K-Algebra A[Bearbeiten | Quelltext bearbeiten]

Alternative Beschreibung des Adelerings eines globalen Körpers[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper. Sei eine endliche Stellenmenge von die umfasst. Hierbei bezeichnet die unendlichen Stellen des globalen Körpers. Definiere

Man definiert die Addition und Multiplikation komponentenweise und versieht den entstandenen Ring mit der Produkttopologie. Es entsteht ein lokalkompakter, topologischer Ring. Anders formuliert: ist die Menge aller wobei für alle also für alle gelten soll.

Bemerkung: Ist eine weitere endliche Teilmenge der Stellenmenge von mit der Eigenschaft dann ist ein offener Unterring von

Wir geben nun eine alternative Definition des Adelerings. Mengentheoretisch ist die Vereinigung über alle Mengen der Form wobei die Vereinigung alle endlichen Teilmengen von der gesamten Stellenmenge von durchläuft. Es gilt also

In anderen Worten ist nichts anderes als die Menge aller für die gilt: für fast alle Die Topologie auf wird so definiert, dass alle offene Unterringe von werden sollen. Dadurch wird ein lokalkompakter, topologischer Ring.

Sei nun eine Stelle von und sei eine endliche Teilmenge der Stellenmenge von welche die unendlichen Stellen und enthält. Es gilt:

Definiere nun

Dann gilt:

Definiere weiterhin:

wobei alle endlichen Teilmengen der Stellenmenge durchläuft, welche enthält. Dann gilt offensichtlich:

via der Abbildung Dies kann mit jeder endlichen Stellenmenge anstelle von ebenso gemacht werden.

Mit Hilfe der obigen Definition von gibt es eine natürliche Einbettung und eine natürliche Projektion

Der Adelering eines K-Vektorraums E[Bearbeiten | Quelltext bearbeiten]

Die folgenden beiden Definitionen orientieren sich an Weil (1967), S. 60ff. Sei wie bisher ein globaler Körper und sei nun ein -dimensionaler -Vektorraum, Wir fixieren eine -Basis von Für jede Stelle von schreiben wir und Definiere dann den Adelering von als

Diese Definition ist angelehnt an die alternative Beschreibung des Adelerings als Tensorprodukt. Wir konstruieren wieder die Topologie auf analog wie in dem Lemma über die alternative Definition des Adelerings eines Zahlkörpers. Um dies zu tun, ist es wichtig, dass Wir versehen dann den Adelering von mit der restringierten Produkttopologie.

Analog wie in dem Abschnitt über den Adelering bei einer Körpererweiterung erhalten wir Dann kann durch natürlich in eingebettet werden.

Im Folgenden wird eine alternative Definition der Topologie auf dem Adelering gegeben. Die Topologie auf ist gegeben als die gröbste Topologie, für welche die Linearformen auf das sind lineare Abbildungen die ausgedehnt werden zu linearen Abbildungen von nach stetig sind. Man benutzt jeweils, dass bzw. auf natürliche Art und Weise in bzw. eingebettet werden können. Mit anderen Worten: Die Wahl einer Basis von über liefert einen Isomorphismus von nach also einen Isomorphismus von nach Man kann nun mit der Produkttopologie versehen und diese mit Hilfe des Isomorphismus nach transportieren. Die Wahl der Topologie hängt nicht von der Wahl der Basis ab, denn eine weitere Basiswahl definiert einen zweiten Isomorphismus. Die Komposition der Isomorphismen ergibt einen linearen Homöomorphismus, der die eine Topologie in die andere überführt. Man kann dies wie folgt darstellen:

wobei die auftretenden Summen Summanden haben. Falls so liefert obige Definition den bereits definierten Adelering.

Der Adelering einer K-Algebra A[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper und sei nun eine endlichdimensionale -Algebra. Dann ist insbesondere ein endlichdimensionaler -Vektorraum. Folglich ist definiert, vgl. dazu den letzten Abschnitt. Wir dehnen die Multiplikation von auf aus. Dies geht wie folgt:

Es gilt, dass Da wir eine Multiplikation auf und auf haben, können wir eine Multiplikation auf definieren, via

Alternativ, kann man eine -Basis von fixieren. Um die Multiplikation auf vollständig zu beschreiben, genügt es zu wissen, wie die Basiselemente miteinander multipliziert werden. Es existieren so dass

Mit Hilfe dieser können wir eine Multiplikation auf definieren:

Und ebenso eine Multiplikation auf und damit auf

Es folgt, dass eine -Algebra mit ist. Sei eine endliche Teilmenge von welche eine -Basis von enthält. Für jede endliche Stelle von nenne das -Modul erzeugt von in Für jede endliche Teilmenge der Stellenmenge von welche enthält, definiere

Man kann zeigen, dass es dann eine endliche Menge gibt, so dass ein offener Unterring von ist, falls Es gilt dann weiterhin, dass die Vereinigung aller dieser Unterringe ist. Man kann zeigen, dass im Falle der oben definierte Adelering kanonisch isomorph zur „ersten“ Definition des Adelerings ist.

Spur und Norm auf dem Adelering[Bearbeiten | Quelltext bearbeiten]

Spur und Norm auf dem Adelering[Bearbeiten | Quelltext bearbeiten]

Sei eine endliche Körpererweiterung des globalen Körpers Dann gilt Mit der Identifikation folgt, dass als abgeschlossener Unterring von aufgefasst werden kann. Schreibe für diese Einbettung von in Explizit gilt: Sei Dann ist wobei dies für alle über gilt.

Sei ein Körperturm globaler Körper. Dann gilt

Schränken wir die Abbildung auf die Menge der Hauptadele ein, so ist sie gleich der kanonischen Injektion

Sei nun eine Basis der Körpererweiterung Also kann jedes geschrieben werden als wobei eindeutig sind. Die Abbildung ist stetig. Definiere nun (hängen von ab) via der Gleichungen

Norm und Spur von werden definiert als:

Dies sind genau die Spur bzw. die Determinante der linearen Abbildung Beides sind stetige Funktionen auf dem Adelering.

Eigenschaften von Norm und Spur[Bearbeiten | Quelltext bearbeiten]

Die Norm und die Spur erfüllen die üblichen Eigenschaften:

Weiterhin gilt, dass für die Spur und die Norm der üblichen Spur und Norm der Körpererweiterung entspricht. Für einen Körperturm haben wir wie gewohnt

Weiterhin kann gezeigt werden:

Anmerkung: Der letzte Punkt ist nicht trivial, vgl. hierzu Weil (1967), S. 52ff bzw. S. 64 oder Cassels (1967), S. 74.

Eigenschaften des Adelerings[Bearbeiten | Quelltext bearbeiten]

Prinzipiell gilt, dass in den Beweisen die Situation oft auf den Fall oder zurückgeführt werden können. Die Verallgemeinerung für beliebige globale Körper oder ähnliche Objekte ist dann oft trivial.

Der Adelering ist ein lokalkompakter, topologischer Ring[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper. Dann ist für jede Stellenmenge der Ring ein topologischer Ring. Weiterhin ist eine lokalkompakte Gruppe. Das bedeutet, dass die Menge mit ihrer Topologie lokalkompakt ist und die Gruppenverknüpfung stetig ist. Dies wiederum bedeutet, dass die Abbildung

stetig ist. Darüber hinaus soll auch die Inversionsabbildung der Gruppenverknüpfung stetig sein, d. h. die Abbildung

soll stetig sein.

Eine Umgebungsbasis der in ist auch eine Umgebungsbasis der im Adelering. Alternativ bilden auch alle Mengen der Form wobei Umgebung der in und