Durchschnittliche Größenordnung

Van Wikipedia, de gratis encyclopedie

In der Zahlentheorie bezeichnet die durchschnittliche Größenordnung einer zahlentheoretischen Funktion eine einfachere Funktion, die „im Mittel“ dieselben Werte annimmt.[1][2]

Definition[Bearbeiten | Quelltext bearbeiten]

Es sei eine zahlentheoretische Funktion. Man sagt, die durchschnittliche Größenordnung von ist , wenn für die asymptotische Gleichheit

gilt. Es ist üblich, eine Näherungsfunktion zu wählen, die stetig und monoton ist. Aber auch damit ist sie keineswegs eindeutig bestimmt.

Beispiele[Bearbeiten | Quelltext bearbeiten]

Werte und durchschnittliche Größenordnung von r2(n)
Werte und durchschnittliche Größenordnung von r4(n)
Werte und durchschnittliche Größenordnung von r8(n)
Werte und durchschnittliche Größenordnung von σ1
Werte und durchschnittliche Größenordnung von ω und Ω

Die durchschnittliche Größenordnung der Quadratsummen-Funktion bestimmt man aus der Summe[3]

.

Das ist anschaulich die Anzahl der (ganzzahligen) Gitterpunkte in einer -dimensionalen Kugel mit dem Radius und darum näherungsweise gleich dem Kugelvolumen. Genauer lässt sich (mit der Landau’schen O-Notation) rekursiv ableiten

,

wobei die Konstanten die Volumina der -dimensionalen Einheitskugeln sind:

Die durchschnittliche Größenordnung von ist damit , also z. B. .

Weitere Beispiele[Bearbeiten | Quelltext bearbeiten]

  • Die durchschnittliche Größenordnung der Eulerschen Phi-Funktion ist .
  • Die durchschnittliche Größenordnung der Teileranzahlfunktion ist . Genauer gilt mit der Eulerschen Konstanten
.
  • Die durchschnittliche Größenordnung der Teilerfunktion für ist mit der Riemannschen Zetafunktion .
  • Die durchschnittliche Größenordnung der Ordnung , also der Anzahl der (nicht notwendigerweise verschiedenen) Primfaktoren von wie auch von als Anzahl der verschiedenen Primfaktoren ist . Genauer gilt (Satz von Hardy und Ramanujan)
mit den Konstanten (Mertens-Konstante) und
Für beide Funktionen sind außerdem durchschnittliche und normale Größenordnung gleich.
  • Der Primzahlsatz ist äquivalent zur Feststellung, dass die durchschnittliche Größenordnung der Mangoldtfunktion gleich ist.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Eric W. Weisstein: Mertens Constant. In: MathWorld (englisch).

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. E. Krätzel: Zahlentheorie. VEB Deutscher Verlag der Wissenschaften, Berlin 1981, S. 132.
  2. G. H. Hardy, E. M. Wright: Einführung in die Zahlentheorie. R. Oldenbourg, München 1958, S. 300.
  3. E. Krätzel: Zahlentheorie. VEB Deutscher Verlag der Wissenschaften, Berlin 1981, S. 197.