Homologietheorie

Van Wikipedia, de gratis encyclopedie

Eine Homologie (altgriechisch ὁμός homos, „ähnlich, gleich“, und λόγος logos, hier: „Verhältnis, Analogie, Proportion“[1]) ist ein mathematisches Objekt. Sie ist eine Folge von mathematischen Objekten, den Homologiegruppen. Zu den wichtigsten Ausprägungen einer Homologie zählt die singuläre Homologie. Homologien wurden im Bereich der algebraischen Topologie entwickelt. Später wurden sie auch als rein algebraische Objekte betrachtet, woraus sich das Teilgebiet der homologischen Algebra entwickelte. Die ursprüngliche Motivation dafür, Homologiegruppen zu definieren, war die Beobachtung, dass sich Formen durch ihre Löcher unterscheiden lassen (beispielsweise in der Klassifikation der Flächen). Da Löcher aber „nicht da“ sind, ist es nicht offensichtlich, wie man Löcher mathematisch definieren kann. Die Homologie ist ein mathematischer Ansatz, die Existenz von Löchern zu formalisieren. Gewisse „sehr feine“ Löcher sind für die Homologie unsichtbar; hier kann u. U. auf die schwerer zu bestimmenden Homotopiegruppen zurückgegriffen werden.

Im Bereich der algebraischen Topologie sind die Homologien beziehungsweise die Homologiegruppen Invarianten eines topologischen Raums, sie helfen also dabei, topologische Räume zu unterscheiden.

Konstruktion von Homologiegruppen

[Bearbeiten | Quelltext bearbeiten]

Man geht im Allgemeinen wie folgt vor: Einem mathematischen Objekt wird zunächst ein Kettenkomplex zugeordnet, der Information über enthält. Ein Kettenkomplex ist eine Folge von Moduln über einem festen Ring, verbunden durch Homomorphismen , so dass die Hintereinanderausführung je zweier dieser Abbildungen die Nullabbildung ist: für jedes . Dies bedeutet, dass das Bild der -ten Abbildung stets im Kern der -ten Abbildung enthalten ist. Man definiert nun die -te Homologiegruppe von als den Quotientenmodul

Ein Kettenkomplex heißt exakt, wenn das Bild der -ten Abbildung stets der Kern der -ten Abbildung ist; die Homologiegruppen von messen also, „wie unexakt“ der zugeordnete Kettenkomplex ist.

Das erste Beispiel stammt aus der algebraischen Topologie: die simpliziale Homologie eines simplizialen Komplexes . Hier ist der freie Modul über den -dimensionalen orientierten Simplizes von . Die Abbildungen heißen Randabbildungen und bilden das Simplex mit den Ecken

auf die alternierende Summe der „Randflächen“

ab.

Für Moduln über einem Körper (d. h. Vektorräume) beschreibt die Dimension der -ten Homologiegruppe von die Anzahl der -dimensionalen Löcher von .

Mit diesem Beispiel kann man eine simpliziale Homologie für jeden topologischen Raum definieren. Der Kettenkomplex für wird so definiert, dass der freie Modul über allen stetigen Abbildungen vom -dimensionalen Einheitssimplex nach ist. Die Homomorphismen ergeben sich aus den simplizialen Randabbildungen.

In der homologischen Algebra benutzt man Homologie, um abgeleitete Funktoren zu definieren. Man betrachtet dort einen additiven Funktor und einen Modul . Der Kettenkomplex für wird wie folgt konstruiert: sei ein freier Modul und ein Epimorphismus, sei ein freier Modul, der die Eigenschaft besitzen soll, dass ein Epimorphismus existiert, Man erhält also eine Sequenz freier Moduln und Homomorphismen und durch Anwendung von einen Kettenkomplex. Die -te Homologie dieses Komplexes hängt, wie man zeigen kann, nur von und ab. Man schreibt und nennt den -ten abgeleiteten Funktor von .

Homologiefunktoren

[Bearbeiten | Quelltext bearbeiten]

Die Kettenkomplexe bilden eine Kategorie: Ein Morphismus – man sagt: eine Kettenabbildung – vom Kettenkomplex in den Kettenkomplex ist eine Folge von Modulhomomorphismen , so dass für jedes . Die -te Homologiegruppe kann man als Funktor von der Kategorie der Kettenkomplexe in die Kategorie der Moduln über dem zugrunde liegenden Ring auffassen.

Wenn der Kettenkomplex von funktoriell abhängt (d. h. jeder Morphismus induziert eine Kettenabbildung vom Kettenkomplex von in den von ), dann sind die Funktoren von der Kategorie, zu der gehört, in die Kategorie der Moduln.

Ein Unterschied zwischen Homologie und Kohomologie liegt darin, dass die Kettenkomplexe in der Kohomologie kontravariant von abhängen und daher die Homologiegruppen (die dann Kohomologiegruppen genannt werden und in diesem Kontext mit bezeichnet werden) kontravariante Funktoren sind. Des Weiteren hat man meist auf der graduierten Kohomologiegruppe eine kanonische Ringstruktur, etwas Vergleichbares gibt es auf dem Niveau der Homologie nicht.

Ist ein Kettenkomplex, so dass alle endlich erzeugte freie Moduln sind, von denen höchstens endlich viele nicht null sind, dann kann man die Euler-Charakteristik

definieren. Man kann zeigen, dass die Euler-Charakteristik auch bezüglich der Homologie ausgedrückt werden kann:

In der algebraischen Topologie liefert das zwei Wege, die Invariante für das Objekt , aus dem der Kettenkomplex erzeugt wurde, auszurechnen.

Jede kurze exakte Sequenz

von Kettenkomplexen liefert eine lange exakte Sequenz der Homologiegruppen

Alle Abbildungen dieser exakten Sequenz sind durch die Abbildungen zwischen den Kettenkomplexen induziert, außer den Abbildungen , die verbindende Homomorphismen genannt werden und deren Existenz mit dem Schlangenlemma bewiesen wird.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Wilhelm Pape: Handwörterbuch der griechischen Sprache. Braunschweig 31914, Band 2, S. 58–61. Stichwort λόγος, Bedeutung C.5 (Online-Version)