Isokline
Van Wikipedia, de gratis encyclopedie
Der Begriff Isokline (von griech. ísos = gleich und klínein = neigen) bedeutet in der Mathematik und in der Geophysik eine Kurve gleicher Neigung.
Isoklinen in der Mathematik
[Bearbeiten | Quelltext bearbeiten]In der Mathematik sind Isoklinen ein Hilfsmittel zur graphischen Integration, also zur zeichnerischen Bestimmung von Näherungslösungen einer Differentialgleichung.
Für eine explizite Differentialgleichung ist jede Kurve mit einer Gleichung des Typs (bei konstantem ) eine Isokline. In den Schnittpunkten verschiedener Lösungskurven der Differentialgleichung mit dieser Isokline haben diese Lösungskurven die gleiche Steigung (nämlich ) und damit den gleichen Neigungswinkel gegenüber der -Achse.
Beispiel
[Bearbeiten | Quelltext bearbeiten]Für die Differentialgleichung lautet eine Isoklinengleichung beziehungsweise . Die Isoklinen in diesem Beispiel sind also die Geraden durch den Ursprung mit Ausnahme der -Achse. Die Lösungen der Differentialgleichung haben (zumindest lokal) die Form . Die zugehörigen Lösungskurven sind für Parabeln; für erhält man die -Achse als weitere Lösungskurve.
Die beiden Skizzen zeigen einige der Isoklinen (rot). Aus den kurzen Geradenstücken (Linienelementen) lässt sich jeweils die zugehörige Steigung ablesen. In der rechten Skizze sind zusätzlich einige Lösungskurven (blau) eingezeichnet.
Isoklinen in der Geophysik
[Bearbeiten | Quelltext bearbeiten]In der Geophysik wird der Begriff Isokline für Linien gleicher magnetischer Inklination verwendet. Eine solche Isokline verbindet Punkte miteinander, in denen die Feldlinien des Erdmagnetfelds den gleichen Winkel gegenüber der Erdoberfläche einschließen.
Nullkline
[Bearbeiten | Quelltext bearbeiten]Einen Sonderfall stellt die Nullkline dar, für die gilt .
Siehe auch
[Bearbeiten | Quelltext bearbeiten]Literatur
[Bearbeiten | Quelltext bearbeiten]- Horst von Sanden: Praxis der Differentialgleichungen. Eine Einführung. De Gruyter, Berlin 2019, ISBN 978-3-11-114042-1.