Diskretes stochastisches Integral
Van Wikipedia, de gratis encyclopedie
Das diskrete stochastische Integral ist in der Wahrscheinlichkeitstheorie eine Möglichkeit, zwei stochastische Prozesse in diskreter Zeit zu verknüpfen, um aus ihnen einen weiteren stochastischen Prozess zu erstellen. Ist insbesondere einer der beiden Prozesse ein Martingal, so spricht man auch von der Martingaltransformation.
Definition
[Bearbeiten | Quelltext bearbeiten]Gegeben sei eine Filtrierung und ein reeller Prozess , der -adaptiert ist. Sei außerdem ein weiterer reeller Prozess, der -vorhersagbar ist. Dann heißt der für durch
definierte stochastische Prozess das diskrete stochastische Integral von bezüglich . Ist ein Martingal, so heißt die Martingaltransformierte von .
Beispiel: gestoppter Prozess
[Bearbeiten | Quelltext bearbeiten]Gegeben sei ein reeller stochastischer Prozess mit erzeugter Filtrierung und eine Stoppzeit bezüglich . Dann ist der Prozess auch -vorhersagbar. Das diskrete stochastische Integral ist dann
- .
Das ist dann genau der gestoppte Prozess bezüglich .
Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Sei ein adaptierter, reeller Prozess mit . Dann gilt:
- ist genau dann ein (Sub-)Supermartingal, wenn ein (Sub-)Supermartingal ist für jedes vorhersagbare , das lokal beschränkt ist, für das also für alle gilt.
- ist genau dann ein Martingal, wenn ein Martingal ist für jedes vorhersagbare , das lokal beschränkt ist, für das also für alle gilt.
Diese Aussage wird auch als Martingal-Transformationssatz bezeichnet.
Folgerungen
[Bearbeiten | Quelltext bearbeiten]Aus der obigen Aussage über die Stabilität von Martingalen unter dem diskreten stochastischen Integral lässt sich folgender Schluss ziehen: Nimmt man als Spieler an einem fairen Spiel über mehrere Runden Teil mit einer Spielstrategie , die darin besteht, in der Runde einen Einsatz von zu setzen, so gibt es keine unter diesen Strategien, die für den Spieler vorteilhafter als andere wäre. Das faire Spiel entspricht einem Martingal, der Gewinn nach der n-ten Runde ist dann die Martingaltransformierte von und . Da es sich hierbei aber stets wieder um ein Martingal handelt, kann das Spiel nicht durch eine Spielstrategie so verändert werden, dass es für den Spieler vorteilhaft wäre, was einem Submartingal entspräche.
Vergleichbare Aussagen über eine mögliche Verbesserung des Gesamtgewinns durch Abbruchstrategien liefert das Optional Stopping Theorem.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.
- Christian Hesse: Angewandte Wahrscheinlichkeitstheorie. 1. Auflage. Vieweg, Wiesbaden 2003, ISBN 3-528-03183-2, doi:10.1007/978-3-663-01244-3.