10476 Los Molinos
From Wikipedia the free encyclopedia
Discovery[1] | |
---|---|
Discovered by | S. J. Bus |
Discovery site | Siding Spring Obs. |
Discovery date | 2 March 1981 |
Designations | |
(10476) Los Molinos | |
Named after | Los Molinos Observatory[2] (Uruguayan observatory) |
1981 EY38 · 1978 NB3 | |
main-belt · (inner)[3] background[4] | |
Orbital characteristics[1] | |
Epoch 23 March 2018 (JD 2458200.5) | |
Uncertainty parameter 0 | |
Observation arc | 39.31 yr (14,358 days) |
Aphelion | 2.9165 AU |
Perihelion | 1.7185 AU |
2.3175 AU | |
Eccentricity | 0.2585 |
3.53 yr (1,289 days) | |
95.559° | |
0° 16m 45.84s / day | |
Inclination | 9.4472° |
249.86° | |
38.678° | |
Physical characteristics | |
Dimensions | 2.853±0.014 km[5][6] 2.96 km (calculated)[3] |
267.906±1.9703 h[7] | |
0.20 (assumed)[3] 0.3424±0.0425[5][6] | |
S[3] | |
14.4[6] · 14.556±0.003 (R)[7] · 14.6[1] · 15.01[3] · 15.33±0.50[8] | |
10476 Los Molinos, provisional designation 1981 EY38, is a stony background asteroid and slow rotator from the inner regions of the asteroid belt, approximately 2.9 kilometers (1.8 miles) in diameter. It was discovered on 2 March 1981, by American astronomer Schelte Bus at the Siding Spring Observatory in Australia. The asteroid was named for the Los Molinos Observatory in Uruguay.[2]
Orbit and classification
[edit]Los Molinos is a non-family asteroid from the main belt's background population.[4] It orbits the Sun in the inner asteroid belt at a distance of 1.7–2.9 AU once every 3 years and 6 months (1,289 days; semi-major axis of 2.32 AU). Its orbit has an eccentricity of 0.26 and an inclination of 9° with respect to the ecliptic.[1] The body's observation arc begins with its first observations as 1978 NB3 at Crimea–Nauchnij in July 1978.[2]
Physical characteristics
[edit]Based on its high albedo and its location within the asteroid belt, Los Molinos is an assumed S-type asteroid.[3]
Rotation period
[edit]In August 2010, a rotational lightcurve of Los Molinos was obtained from photometric observations in the R-band by astronomers at the Palomar Transient Factory in California. Lightcurve analysis gave a rotation period of 267.906±1.9703 hours with a brightness amplitude of 0.33 magnitude (U=2).[7] This makes Los Molinos one of the top 200 slow rotators known to exist.[3]
Diameter and albedo
[edit]According to the survey carried out by the NEOWISE mission of NASA's Wide-field Infrared Survey Explorer, Los Molinos measures 2.853 kilometers in diameter and its surface has a high albedo of 0.34.[5][6]
The Collaborative Asteroid Lightcurve Link assumes a standard albedo for stony asteroids of 0.20 and calculates a diameter of 2.96 kilometers based on an absolute magnitude of 15.01.[3]
Naming
[edit]This minor planet was named after the Los Molinos Observatory (844) located near Montevideo in Uruguay. The observatory is known for its astrometric follow-up observations of asteroids and comets.[2] The official naming citation was published by the Minor Planet Center on 13 April 2017 (M.P.C. 103975/103976).[9]
References
[edit]- ^ a b c d "JPL Small-Body Database Browser: 10476 Los Molinos (1981 EY38)" (2017-10-30 last obs.). Jet Propulsion Laboratory. Retrieved 20 February 2018.
- ^ a b c d "10476 Los Molinos (1981 EY38)". Minor Planet Center. Retrieved 20 February 2018.
- ^ a b c d e f g h "LCDB Data for (10476) Los Molinos". Asteroid Lightcurve Database (LCDB). Retrieved 20 February 2018.
- ^ a b "Asteroid 10476 Los Molinos – Proper Elements". AstDyS-2, Asteroids – Dynamic Site. Retrieved 29 October 2019.
- ^ a b c Masiero, Joseph R.; Mainzer, A. K.; Grav, T.; Bauer, J. M.; Cutri, R. M.; Dailey, J.; et al. (November 2011). "Main Belt Asteroids with WISE/NEOWISE. I. Preliminary Albedos and Diameters". The Astrophysical Journal. 741 (2): 20. arXiv:1109.4096. Bibcode:2011ApJ...741...68M. doi:10.1088/0004-637X/741/2/68.
- ^ a b c d Mainzer, A.; Grav, T.; Masiero, J.; Hand, E.; Bauer, J.; Tholen, D.; et al. (November 2011). "NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results". The Astrophysical Journal. 741 (2): 25. arXiv:1109.6407. Bibcode:2011ApJ...741...90M. doi:10.1088/0004-637X/741/2/90.
- ^ a b c Waszczak, Adam; Chang, Chan-Kao; Ofek, Eran O.; Laher, Russ; Masci, Frank; Levitan, David; et al. (September 2015). "Asteroid Light Curves from the Palomar Transient Factory Survey: Rotation Periods and Phase Functions from Sparse Photometry". The Astronomical Journal. 150 (3): 35. arXiv:1504.04041. Bibcode:2015AJ....150...75W. doi:10.1088/0004-6256/150/3/75.
- ^ Veres, Peter; Jedicke, Robert; Fitzsimmons, Alan; Denneau, Larry; Granvik, Mikael; Bolin, Bryce; et al. (November 2015). "Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1 - Preliminary results". Icarus. 261: 34–47. arXiv:1506.00762. Bibcode:2015Icar..261...34V. doi:10.1016/j.icarus.2015.08.007.
- ^ "MPC/MPO/MPS Archive". Minor Planet Center. Retrieved 20 February 2018.
External links
[edit]- Asteroid Lightcurve Database (LCDB), query form (info Archived 2017-12-16 at the Wayback Machine)
- Dictionary of Minor Planet Names, Google books
- Asteroids and comets rotation curves, CdR – Observatoire de Genève, Raoul Behrend
- Discovery Circumstances: Numbered Minor Planets (10001)-(15000) – Minor Planet Center
- 10476 Los Molinos at the JPL Small-Body Database