Energy density Extended Reference Table

From Wikipedia the free encyclopedia

Top View

This is an extended version of the energy density table from the main Energy density page:

Energy densities table
Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency %
Arbitrary Antimatter 89,875,517,874 depends on density
Deuterium–tritium fusion 576,000,000
Uranium-235 fissile isotope 144,000,000 1,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor 86,000,000
Reactor-grade uranium (3.5% U-235) in light-water reactor 3,456,000 35%
Pu-238 α-decay 2,200,000
Hf-178m2 isomer 1,326,000 17,649,060
Natural uranium (0.7% U235) in light-water reactor 443,000 35%
Ta-180m isomer 41,340 689,964
Metallic hydrogen (recombination energy) 216
Specific orbital energy of Low Earth orbit (approximate) 33.0
Beryllium + Oxygen 23.9
Lithium + Fluorine 23.75
Octaazacubane potential explosive 22.9
Hydrogen + Oxygen 13.4
Gasoline + Oxygen –> Derived from Gasoline 13.3
Dinitroacetylene explosive - computed 9.8
Octanitrocubane explosive 8.5 16.9
Tetranitrotetrahedrane explosive - computed 8.3
Heptanitrocubane explosive - computed 8.2
Sodium (reacted with chlorine) 7.0349
Hexanitrobenzene explosive 7
Tetranitrocubane explosive - computed 6.95
Ammonal (Al+NH4NO3 oxidizer) 6.9 12.7
Tetranitromethane + hydrazine bipropellant - computed 6.6
Nitroglycerin 6.38 10.2
ANFO-ANNM 6.26
battery, Lithium–air 6.12
Octogen (HMX) 5.7 10.8
TNT 4.610 6.92
Copper Thermite (Al + CuO as oxidizer) 4.13 20.9
Thermite (powder Al + Fe2O3 as oxidizer) 4.00 18.4
Hydrogen peroxide decomposition (as monopropellant) 2.7 3.8
battery, Lithium-ion nanowire 2.54 29 95%
battery, Lithium Thionyl Chloride (LiSOCl2) 2.5
Water 220.64 bar, 373.8 °C 1.968 0.708
Kinetic energy penetrator 1.9 30
battery, Lithium–Sulfur 1.80 1.26
battery, Fluoride-ion 1.7 2.8
battery, Hydrogen closed cycle H fuel cell 1.62
Hydrazine decomposition (as monopropellant) 1.6 1.6
Ammonium nitrate decomposition (as monopropellant) 1.4 2.5
Thermal Energy Capacity of Molten Salt 1 98%
Molecular spring approximate 1
battery, Lithium–Manganese 0.83-1.01 1.98-2.09
battery, Sodium–Sulfur 0.72 1.23 85%
battery, Lithium-ion 0.46-0.72 0.83-3.6 95%
battery, Sodium–Nickel Chloride, High Temperature 0.56
battery, Zinc–manganese (alkaline), long life design 0.4-0.59 1.15-1.43
battery, Silver-oxide 0.47 1.8
Flywheel 0.36-0.5
5.56 × 45 mm NATO bullet muzzle energy density 0.4 3.2
battery, Nickel–metal hydride (NiMH), low power design as used in consumer batteries 0.4 1.55
Liquid Nitrogen 0.349
WaterEnthalpy of Fusion 0.334 0.334
battery, Zinc–Bromine flow (ZnBr) 0.27
battery, Nickel–metal hydride (NiMH), High-Power design as used in cars 0.250 0.493
battery, Nickel–Cadmium (NiCd) 0.14 1.08 80%
battery, Zinc–Carbon 0.13 0.331
battery, Lead–acid 0.14 0.36
battery, Vanadium redox 0.09 0.1188 7070-75%
battery, Vanadium–Bromide redox 0.18 0.252 80%–90%
Capacitor Ultracapacitor 0.0199 0.050
Capacitor Supercapacitor 0.01 80%–98.5% 39%–70%
Superconducting magnetic energy storage 0 0.008 >95%
Capacitor 0.002
Neodymium magnet 0.003
Ferrite magnet 0.0003
Spring power (clock spring), torsion spring 0.0003 0.0006
Storage type Energy density by mass (MJ/kg) Energy density by volume (MJ/L) Peak recovery efficiency % Practical recovery efficiency %

Notes

[edit]
  1. ^ Prelas, Mark (2015). Nuclear-Pumped Lasers. Springer. p. 135. ISBN 9783319198453.
  2. ^ Silvera, Isaac F; Cole, John W (2010-03-01). "Metallic hydrogen: The most powerful rocket fuel yet to exist". Journal of Physics: Conference Series. 215: 012194. doi:10.1088/1742-6596/215/1/012194. ISSN 1742-6596.
  3. ^ Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide1". Journal of the American Chemical Society. 75 (13): 3102–3103. doi:10.1021/ja01109a018.
  4. ^ Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?†". Inorganic Chemistry. 35 (24): 7124–7133. doi:10.1021/ic9606237. PMID 11666896.
  5. ^ Miller, Catherine (1 February 2021). "Introduction to Rocket Propulsion" (PDF). Archived from the original (PDF) on 9 May 2021. Retrieved 9 May 2021.
  6. ^ Wiley Interscience
  7. ^ Octanitrocubane
  8. ^ Wiley Interscience
  9. ^ "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07.
  10. ^ Nitroglycerin
  11. ^ HMX
  12. ^ Kinney, G.F.; K.J. Graham (1985). Explosive shocks in air. Springer-Verlag. ISBN 978-3-540-15147-0.
  13. ^ "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. Archived from the original on 2010-01-07. Retrieved 2010-05-07.
  14. ^ "Lithium Thionyl Chloride Batteries". Nexergy. Archived from the original on 2009-02-04. Retrieved 2010-05-07.
  15. ^ "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power, Inc. 2005-09-28. Archived from the original (PDF) on 2008-08-28.
  16. ^ Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry. 44 (5): 506–509. doi:10.1134/s1023193508050029. S2CID 97022927.
  17. ^ "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Archived from the original on 2008-09-20. Retrieved 2010-05-07.
  18. ^ "Technology". SolarReserve. Archived from the original on 2008-01-19. Retrieved 2010-05-07.
  19. ^ "ProCell Lithium battery chemistry". Duracell. Archived from the original on 2011-07-10. Retrieved 2009-04-21.
  20. ^ "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21.
  21. ^ "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. Archived from the original on 2015-10-17. Retrieved 2010-05-07.
  22. ^ Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) - - Document #5960185". Proc., Intersoc. Energy Convers. Eng. Conf.; (United States). 2. Osti.gov. OSTI 5960185.
  23. ^ "Battery energy storage in various battery types". AllAboutBatteries.com. Archived from the original on 2009-04-28. Retrieved 2009-04-21.
  24. ^ A typically available lithium-ion cell with an Energy Density of 201 wh/kg "Li-Ion 18650 Cylindrical Cell 3.6V 2600mAh - Highest Energy Density Cell in Market (LC-18650H4) - LC-18650H4". Archived from the original on 2008-12-01. Retrieved 2012-12-14.
  25. ^ "Lithium Batteries". Archived from the original on 2011-08-08. Retrieved 2010-07-02.
  26. ^ Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF). p. 7. Archived from the original (PDF) on 2012-09-13. Retrieved 2009-02-26. Table 3: Input and Output Energy from Batteries
  27. ^ "Storage Technology Report, ST6 Flywheel" (PDF). Archived from the original (PDF) on 2013-01-14. Retrieved 2012-12-14.
  28. ^ "Next-gen Of Flywheel Energy Storage". Product Design & Development. Archived from the original on 2010-07-10. Retrieved 2009-05-21.
  29. ^ "Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008" (PDF). Archived from the original (PDF) on 2010-01-04. Retrieved 2012-12-14.
  30. ^ "ZBB Energy Corp". Archived from the original on 2007-10-15. 75 to 85 watt-hours per kilogram
  31. ^ High Energy Metal Hydride Battery Archived 2009-09-30 at the Wayback Machine
  32. ^ "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc" (PDF). Archived from the original (PDF) on 2010-11-22. Retrieved 2010-05-07.
  33. ^ "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. Retrieved 2010-05-07.
  34. ^ Zdenek, Cerovský; Pavel, Mindl. "Hybrid drive with super-capacitor energy storage" (PDF). Faculty of Mechanical Engineering CTU in Prague. Archived from the original (PDF) on 2012-07-22. Retrieved 2012-12-14.
  35. ^ [1] Archived February 16, 2010, at the Wayback Machine
  36. ^ "Department of Computing". Archived from the original on 2006-10-06. Retrieved 2012-12-14.
  37. ^ Rahman, M.; Slemon, G. (September 1985). "Promising applications of neodymium boron Iron magnets in electrical machines" (PDF). IEEE Transactions on Magnetics. 21 (5): 1712–1716. doi:10.1109/TMAG.1985.1064113. ISSN 0018-9464. Archived from the original (PDF) on 13 May 2011.
  38. ^ "Garage Door Springs". Garagedoor.org. Retrieved 2010-05-07.