Thermodynamic potential of entropy, analogous to the free energy
A thermodynamic free entropy is an entropic thermodynamic potential analogous to the free energy . Also known as a Massieu, Planck, or Massieu–Planck potentials (or functions), or (rarely) free information. In statistical mechanics , free entropies frequently appear as the logarithm of a partition function . The Onsager reciprocal relations in particular, are developed in terms of entropic potentials. In mathematics , free entropy means something quite different: it is a generalization of entropy defined in the subject of free probability .
A free entropy is generated by a Legendre transformation of the entropy. The different potentials correspond to different constraints to which the system may be subjected.
The most common examples are:
Name Function Alt. function Natural variables Entropy S = 1 T U + P T V − ∑ i = 1 s μ i T N i {\displaystyle S={\frac {1}{T}}U+{\frac {P}{T}}V-\sum _{i=1}^{s}{\frac {\mu _{i}}{T}}N_{i}\,} U , V , { N i } {\displaystyle ~~~~~U,V,\{N_{i}\}\,} Massieu potential \ Helmholtz free entropy Φ = S − 1 T U {\displaystyle \Phi =S-{\frac {1}{T}}U} = − A T {\displaystyle =-{\frac {A}{T}}} 1 T , V , { N i } {\displaystyle ~~~~~{\frac {1}{T}},V,\{N_{i}\}\,} Planck potential \ Gibbs free entropy Ξ = Φ − P T V {\displaystyle \Xi =\Phi -{\frac {P}{T}}V} = − G T {\displaystyle =-{\frac {G}{T}}} 1 T , P T , { N i } {\displaystyle ~~~~~{\frac {1}{T}},{\frac {P}{T}},\{N_{i}\}\,}
where
Note that the use of the terms "Massieu" and "Planck" for explicit Massieu-Planck potentials are somewhat obscure and ambiguous. In particular "Planck potential" has alternative meanings. The most standard notation for an entropic potential is ψ {\displaystyle \psi } , used by both Planck and Schrödinger . (Note that Gibbs used ψ {\displaystyle \psi } to denote the free energy.) Free entropies where invented by French engineer François Massieu in 1869, and actually predate Gibbs's free energy (1875).
Dependence of the potentials on the natural variables [ edit ] S = S ( U , V , { N i } ) {\displaystyle S=S(U,V,\{N_{i}\})} By the definition of a total differential,
d S = ∂ S ∂ U d U + ∂ S ∂ V d V + ∑ i = 1 s ∂ S ∂ N i d N i . {\displaystyle dS={\frac {\partial S}{\partial U}}dU+{\frac {\partial S}{\partial V}}dV+\sum _{i=1}^{s}{\frac {\partial S}{\partial N_{i}}}dN_{i}.} From the equations of state ,
d S = 1 T d U + P T d V + ∑ i = 1 s ( − μ i T ) d N i . {\displaystyle dS={\frac {1}{T}}dU+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}.} The differentials in the above equation are all of extensive variables , so they may be integrated to yield
S = U T + P V T + ∑ i = 1 s ( − μ i N T ) + constant . {\displaystyle S={\frac {U}{T}}+{\frac {PV}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)+{\textrm {constant}}.} Massieu potential / Helmholtz free entropy[ edit ] Φ = S − U T {\displaystyle \Phi =S-{\frac {U}{T}}} Φ = U T + P V T + ∑ i = 1 s ( − μ i N T ) − U T {\displaystyle \Phi ={\frac {U}{T}}+{\frac {PV}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)-{\frac {U}{T}}} Φ = P V T + ∑ i = 1 s ( − μ i N T ) {\displaystyle \Phi ={\frac {PV}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)} Starting over at the definition of Φ {\displaystyle \Phi } and taking the total differential, we have via a Legendre transform (and the chain rule )
d Φ = d S − 1 T d U − U d 1 T , {\displaystyle d\Phi =dS-{\frac {1}{T}}dU-Ud{\frac {1}{T}},} d Φ = 1 T d U + P T d V + ∑ i = 1 s ( − μ i T ) d N i − 1 T d U − U d 1 T , {\displaystyle d\Phi ={\frac {1}{T}}dU+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}-{\frac {1}{T}}dU-Ud{\frac {1}{T}},} d Φ = − U d 1 T + P T d V + ∑ i = 1 s ( − μ i T ) d N i . {\displaystyle d\Phi =-Ud{\frac {1}{T}}+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}.} The above differentials are not all of extensive variables, so the equation may not be directly integrated. From d Φ {\displaystyle d\Phi } we see that
Φ = Φ ( 1 T , V , { N i } ) . {\displaystyle \Phi =\Phi ({\frac {1}{T}},V,\{N_{i}\}).} If reciprocal variables are not desired,[ 3] : 222
d Φ = d S − T d U − U d T T 2 , {\displaystyle d\Phi =dS-{\frac {TdU-UdT}{T^{2}}},} d Φ = d S − 1 T d U + U T 2 d T , {\displaystyle d\Phi =dS-{\frac {1}{T}}dU+{\frac {U}{T^{2}}}dT,} d Φ = 1 T d U + P T d V + ∑ i = 1 s ( − μ i T ) d N i − 1 T d U + U T 2 d T , {\displaystyle d\Phi ={\frac {1}{T}}dU+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}-{\frac {1}{T}}dU+{\frac {U}{T^{2}}}dT,} d Φ = U T 2 d T + P T d V + ∑ i = 1 s ( − μ i T ) d N i , {\displaystyle d\Phi ={\frac {U}{T^{2}}}dT+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i},} Φ = Φ ( T , V , { N i } ) . {\displaystyle \Phi =\Phi (T,V,\{N_{i}\}).} Planck potential / Gibbs free entropy[ edit ] Ξ = Φ − P V T {\displaystyle \Xi =\Phi -{\frac {PV}{T}}} Ξ = P V T + ∑ i = 1 s ( − μ i N T ) − P V T {\displaystyle \Xi ={\frac {PV}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)-{\frac {PV}{T}}} Ξ = ∑ i = 1 s ( − μ i N T ) {\displaystyle \Xi =\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)} Starting over at the definition of Ξ {\displaystyle \Xi } and taking the total differential, we have via a Legendre transform (and the chain rule )
d Ξ = d Φ − P T d V − V d P T {\displaystyle d\Xi =d\Phi -{\frac {P}{T}}dV-Vd{\frac {P}{T}}} d Ξ = − U d 2 T + P T d V + ∑ i = 1 s ( − μ i T ) d N i − P T d V − V d P T {\displaystyle d\Xi =-Ud{\frac {2}{T}}+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}-{\frac {P}{T}}dV-Vd{\frac {P}{T}}} d Ξ = − U d 1 T − V d P T + ∑ i = 1 s ( − μ i T ) d N i . {\displaystyle d\Xi =-Ud{\frac {1}{T}}-Vd{\frac {P}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}.} The above differentials are not all of extensive variables, so the equation may not be directly integrated. From d Ξ {\displaystyle d\Xi } we see that
Ξ = Ξ ( 1 T , P T , { N i } ) . {\displaystyle \Xi =\Xi \left({\frac {1}{T}},{\frac {P}{T}},\{N_{i}\}\right).} If reciprocal variables are not desired,[ 3] : 222
d Ξ = d Φ − T ( P d V + V d P ) − P V d T T 2 , {\displaystyle d\Xi =d\Phi -{\frac {T(PdV+VdP)-PVdT}{T^{2}}},} d Ξ = d Φ − P T d V − V T d P + P V T 2 d T , {\displaystyle d\Xi =d\Phi -{\frac {P}{T}}dV-{\frac {V}{T}}dP+{\frac {PV}{T^{2}}}dT,} d Ξ = U T 2 d T + P T d V + ∑ i = 1 s ( − μ i T ) d N i − P T d V − V T d P + P V T 2 d T , {\displaystyle d\Xi ={\frac {U}{T^{2}}}dT+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}-{\frac {P}{T}}dV-{\frac {V}{T}}dP+{\frac {PV}{T^{2}}}dT,} d Ξ = U + P V T 2 d T − V T d P + ∑ i = 1 s ( − μ i T ) d N i , {\displaystyle d\Xi ={\frac {U+PV}{T^{2}}}dT-{\frac {V}{T}}dP+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i},} Ξ = Ξ ( T , P , { N i } ) . {\displaystyle \Xi =\Xi (T,P,\{N_{i}\}).} Massieu, M.F. (1869). "Compt. Rend". 69 (858): 1057.