Rhizophagus clarus

From Wikipedia the free encyclopedia

Rhizophagus clarus
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Division: Glomeromycota
Class: Glomeromycetes
Order: Glomerales
Family: Glomeraceae
Species:
R. clarus
Binomial name
Rhizophagus clarus
(T.H. Nicolson & N.C. Schenck) C. Walker & A. Schüßler
Synonyms
  • Glomus clarum
  • Rhizoglomus clarum

Rhizophagus clarus (previously known as Glomus clarum[1]) is an arbuscular mycorrhizal fungus in the family Glomeraceae. The species has been shown to improve nutrient absorption and growth in several agricultural crops but is not typically applied commercially.[2]

Distribution and conservation[edit]

Rhizophagus clarus is widely distributed and found worldwide.[3] The species is proposed to be at the level of Least Concern on the IUCN Red List due to its global distribution.[4]

Spores and morphology[edit]

The spores of Rhizophagus clarus vary in color from white to yellow-brown.[5][6][7] They naturally vary in size from 100 to 260 µm and are globose to subglobose in shape.[5][6] The spores are larger than the spores of other species in the genus Rhizophagus.[8] The spores are composed of an outer mucilaginous layer which thickens as they mature.[6][8]

Rhizophagus clarus is composed of extraradical hyphae that extend past the rhizosphere soil zone, and intraradical hyphae that inhabit the host plant's roots.[9]

Ecology[edit]

Rhizophagus clarus is a biotrophic mutualist fungus that exchanges soil nutrients with its host plant for photoassimilates.[10]

Rhizophagus clarus is able to form a symbiotic relationship with a wide variety of plant hosts, some of which include:

Genome[edit]

Rhizophagus clarus has a relatively small number of genes coding for cell wall degrading enzymes because the species is mutualistic and not pathogenic.[8] Effector molecules secreted by the fungus affect plant signaling and immune function to promote fungal colonization.[10] Hyphal anastomosis is common in colonies of Rhizophagus clarus and allows for horizontal gene transfer and increased variation in genotypes.[9]

References[edit]

  1. ^ "Species Fungorum - GSD Species". www.speciesfungorum.org. Retrieved 2022-05-07.
  2. ^ a b c Cely, Martha V. T.; de Oliveira, Admilton G.; de Freitas, Vanessa F.; de Luca, Marcelo B.; Barazetti, André R.; dos Santos, Igor M. O.; Gionco, Barbara; Garcia, Guilherme V.; Prete, Cássio E. C.; Andrade, Galdino (2016-05-25). "Inoculant of Arbuscular Mycorrhizal Fungi (Rhizophagus clarus) Increase Yield of Soybean and Cotton under Field Conditions". Frontiers in Microbiology. 7: 720. doi:10.3389/fmicb.2016.00720. ISSN 1664-302X. PMC 4880672. PMID 27303367.
  3. ^ Registry-Migration.Gbif.Org (2021). "GBIF Backbone Taxonomy". GBIF Secretariat. doi:10.15468/39omei. {{cite journal}}: Cite journal requires |journal= (help)
  4. ^ "Rhizophagus clarus". iucn.ekoo.se. Retrieved 2022-05-07.
  5. ^ a b Bentivenga, Stephen P.; Bever, James D.; Morton, Joseph B. (September 1997). "Genetic variation of morphological characters within a single isolate of the endomycorrhizal fungus Glomus clarum (Glomaceae)". American Journal of Botany. 84 (9): 1211–1216. doi:10.2307/2446044. ISSN 0002-9122. JSTOR 2446044. PMID 21708675.
  6. ^ a b c "Rhizophagus clarus | INVAM | West Virginia University". fungi.invam.wvu.edu. Retrieved 2022-05-07.
  7. ^ Lee, Eun-Hwa; Eom, Ahn-Heum (December 2015). "Growth Characteristics of Rhizophagus clarus Strains and Their Effects on the Growth of Host Plants". Mycobiology. 43 (4): 444–449. doi:10.5941/MYCO.2015.43.4.444. ISSN 1229-8093. PMC 4731649. PMID 26839504.
  8. ^ a b c Kobayashi, Yuuki; Maeda, Taro; Yamaguchi, Katsushi; Kameoka, Hiromu; Tanaka, Sachiko; Ezawa, Tatsuhiro; Shigenobu, Shuji; Kawaguchi, Masayoshi (2018-06-18). "The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi". BMC Genomics. 19 (1): 465. doi:10.1186/s12864-018-4853-0. ISSN 1471-2164. PMC 6007072. PMID 29914365.
  9. ^ a b Purin, Sonia; Morton, Joseph B. (2013-05-01). "Anastomosis behavior differs between asymbiotic and symbiotic hyphae of Rhizophagus clarus". Mycologia. 105 (3): 589–602. doi:10.3852/12-135. ISSN 0027-5514. PMID 23233505. S2CID 36315596.
  10. ^ a b Sędzielewska Toro, Kinga; Brachmann, Andreas (December 2016). "The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus". BMC Genomics. 17 (1): 101. doi:10.1186/s12864-016-2422-y. ISSN 1471-2164. PMC 4746824. PMID 26861502.
  11. ^ Moradtalab, Narges; Hajiboland, Roghieh; Aliasgharzad, Nasser; Hartmann, Tobias E.; Neumann, Günter (January 2019). "Silicon and the Association with an Arbuscular-Mycorrhizal Fungus (Rhizophagus clarus) Mitigate the Adverse Effects of Drought Stress on Strawberry". Agronomy. 9 (1): 41. doi:10.3390/agronomy9010041. ISSN 2073-4395.
  12. ^ Rafique, Mazhar; Ortas, Ibrahim; Rizwan, Muhammad; Sultan, Tariq; Chaudhary, Hassan Javed; Işik, Mehmet; Aydin, Oğuzhan (2019-07-01). "Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil". Environmental Science and Pollution Research. 26 (20): 20689–20700. doi:10.1007/s11356-019-05323-7. ISSN 1614-7499. PMID 31104234. S2CID 159039847.
  13. ^ Urcoviche, Regiane Cristina; Gazim, Zilda Cristiani; Dragunski, Douglas Cardoso; Barcellos, Fernando Gomes; Alberton, Odair (2015-05-01). "Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus". Industrial Crops and Products. 67: 103–107. doi:10.1016/j.indcrop.2015.01.016. ISSN 0926-6690.
  14. ^ Barbosa da Silva, Mylena; Custódio Oliver, Fernanda; Sete da Cruz, Rayane Monique; Almeida Marchi, Bianca; Marques Das Almas, Luiz Renato; Alberton, Odair (2017-09-29). "RESPOTA DO FUNGO MICORRÍZICO ARBUSCULAR RHIZOPHAGUS CLARUS E ADIÇÃO DE SUBSTÂNCIAS HÚMICAS NO CRESCIMENTO DO TOMATEIRO". Scientia Agraria. 18 (3): 123. doi:10.5380/rsa.v18i3.52888. ISSN 1983-2443.