WASP-166

From Wikipedia the free encyclopedia

WASP-166
Observation data
Epoch J2000      Equinox J2000
Constellation Hydra[1]
Right ascension 09h 39m 30.08611s[2]
Declination −20° 58′ 56.8813″[2]
Apparent magnitude (V) 9.35[3]
Characteristics
Evolutionary stage main sequence[2]
Spectral type F9V[4]
Astrometry
Radial velocity (Rv)23.49±0.24[2] km/s
Proper motion (μ) RA: -55.101 mas/yr[2]
Dec.: +11.152 mas/yr[2]
Parallax (π)8.7523±0.0141 mas[2]
Distance372.7 ± 0.6 ly
(114.3 ± 0.2 pc)
Details[4]
Mass1.19±0.06 M
Radius1.22±0.06 R
Luminosity1.86[2] L
Surface gravity (log g)4.34±0.05 cgs
Temperature6050±50 K
Metallicity [Fe/H]+0.19±0.05 dex
Rotation12.1±0.9 d
Rotational velocity (v sin i)4.6±0.8 km/s
Age2.1±0.9 Gyr
Other designations
Filetdor, BD−20 2976, TOI-576, TIC 408310006, WASP-166, TYC 6055-537-1[5]
Database references
SIMBADdata
Exoplanet Archivedata

WASP-166, also named Filetdor, is an F-type main-sequence star 373 light-years (114 parsecs) away in the constellation Hydra. With an apparent magnitude of 9.4, it is too faint to be visible to the naked eye. It hosts one known exoplanet.

Nomenclature

[edit]

The designation WASP-166 comes from the Wide Angle Search for Planets.

This was one of the 20 systems selected to be named in the third NameExoWorlds campaign, beginning in August 2022. The approved names, proposed by a team from Spain, were announced in June 2023. The star is named Filetdor and its planet is named Catalineta, after characters from a Mallorcan folktale about a golden sea serpent, Na Filet d'Or.[6]

Planetary system

[edit]

The planet WASP-166b, later named Catalineta, is a hot, low-density super-Neptune, discovered in 2018 using the transit method as part of the Wide Angle Search for Planets. It is a rare example of a planet within the Neptune desert; few Neptune-mass planets are found so close to their stars.[4]

The orbit of WASP-166b is aligned with its host star's equator, differing from other similar hot Neptunes (such as HAT-P-11b, WASP-107b, and GJ 436 b) which have misaligned orbits.[4] The aligned orbit suggests that it is unlikely to have undergone high-eccentricity migration.[7]

While initial transmission spectroscopy observations of WASP-166b with the HARPS spectrograph failed to detect any molecules in the planet's atmosphere,[8] follow-up studies of the same dataset[9] and of ESPRESSO data have detected sodium in the atmosphere.[10] ESPRESSO has also been used to place constraints on the possible presence of water vapor and clouds.[11]

The WASP-166 planetary system[4]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b / Catalineta 0.101±0.005 MJ 0.0641±0.0011 5.443540(4) <0.07 88.0±0.7° 0.63±0.03 RJ

See also

[edit]

References

[edit]
  1. ^ Roman, Nancy G. (1987). "Identification of a constellation from a position". Publications of the Astronomical Society of the Pacific. 99 (617): 695. Bibcode:1987PASP...99..695R. doi:10.1086/132034. Constellation record for this object at VizieR.
  2. ^ a b c d e f g Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  3. ^ Høg, E.; Fabricius, C.; Makarov, V. V.; Urban, S.; Corbin, T.; Wycoff, G.; Bastian, U.; Schwekendiek, P.; Wicenec, A. (March 2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy and Astrophysics. 355: L27 – L30. Bibcode:2000A&A...355L..27H. ISSN 0004-6361. S2CID 17128864.
  4. ^ a b c d e Hellier, Coel; Anderson, D. R.; et al. (September 2019). "WASP-166b: a bloated super-Neptune transiting a V = 9 star". Monthly Notices of the Royal Astronomical Society. 488 (3): 3067–3075. arXiv:1811.05292. Bibcode:2019MNRAS.488.3067H. doi:10.1093/mnras/stz1903.
  5. ^ "WASP-166". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 24 June 2025.
  6. ^ "2022 Approved Names". NameExoWorlds. IAU. Retrieved 24 June 2025.
  7. ^ Bourrier, V.; Attia, M.; et al. (January 2023). "DREAM: I. Orbital architecture orrery". Astronomy & Astrophysics. 669: A63. arXiv:2301.07727. Bibcode:2023A&A...669A..63B. doi:10.1051/0004-6361/202245004.
  8. ^ Žák, Jiří; Kabáth, Petr; et al. (September 2019). "High-resolution Transmission Spectroscopy of Four Hot Inflated Gas Giant Exoplanets". The Astronomical Journal. 158 (3): 120. arXiv:1907.07267. Bibcode:2019AJ....158..120Z. doi:10.3847/1538-3881/ab32ec.
  9. ^ Seidel, J. V.; Ehrenreich, D.; et al. (September 2020). "Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS): V. Detection of sodium on the bloated super-Neptune WASP-166b". Astronomy & Astrophysics. 641: L7. arXiv:2007.01783. Bibcode:2020A&A...641L...7S. doi:10.1051/0004-6361/202038497.
  10. ^ Seidel, J. V.; Cegla, H. M.; et al. (June 2022). "The hot Neptune WASP-166 b with ESPRESSO II: confirmation of atmospheric sodium". Monthly Notices of the Royal Astronomical Society: Letters. 513 (1): L15 – L19. arXiv:2203.04494. Bibcode:2022MNRAS.513L..15S. doi:10.1093/mnrasl/slac027.
  11. ^ Lafarga, M.; Brogi, M.; et al. (May 2023). "The hot Neptune WASP-166 b with ESPRESSO - III. A blue-shifted tentative water signal constrains the presence of clouds". Monthly Notices of the Royal Astronomical Society. 521 (1): 1233–1252. arXiv:2302.04794. Bibcode:2023MNRAS.521.1233L. doi:10.1093/mnras/stad480.

Further reading

[edit]