Mathematical inequality about the convolution of two functions
In mathematics , Young's convolution inequality is a mathematical inequality about the convolution of two functions,[ 1] named after William Henry Young .
In real analysis , the following result is called Young's convolution inequality:[ 2]
Suppose f {\displaystyle f} is in the Lebesgue space L p ( R d ) {\displaystyle L^{p}(\mathbb {R} ^{d})} and g {\displaystyle g} is in L q ( R d ) {\displaystyle L^{q}(\mathbb {R} ^{d})} and 1 p + 1 q = 1 r + 1 {\displaystyle {\frac {1}{p}}+{\frac {1}{q}}={\frac {1}{r}}+1} with 1 ≤ p , q , r ≤ ∞ . {\displaystyle 1\leq p,q,r\leq \infty .} Then ‖ f ∗ g ‖ r ≤ ‖ f ‖ p ‖ g ‖ q . {\displaystyle \|f*g\|_{r}\leq \|f\|_{p}\|g\|_{q}.}
Here the star denotes convolution , L p {\displaystyle L^{p}} is Lebesgue space , and ‖ f ‖ p = ( ∫ R d | f ( x ) | p d x ) 1 / p {\displaystyle \|f\|_{p}={\Bigl (}\int _{\mathbb {R} ^{d}}|f(x)|^{p}\,dx{\Bigr )}^{1/p}} denotes the usual L p {\displaystyle L^{p}} norm.
Equivalently, if p , q , r ≥ 1 {\displaystyle p,q,r\geq 1} and 1 p + 1 q + 1 r = 2 {\textstyle {\frac {1}{p}}+{\frac {1}{q}}+{\frac {1}{r}}=2} then | ∫ R d ∫ R d f ( x ) g ( x − y ) h ( y ) d x d y | ≤ ( ∫ R d | f | p ) 1 p ( ∫ R d | g | q ) 1 q ( ∫ R d | h | r ) 1 r {\displaystyle \left|\int _{\mathbb {R} ^{d}}\int _{\mathbb {R} ^{d}}f(x)g(x-y)h(y)\,\mathrm {d} x\,\mathrm {d} y\right|\leq \left(\int _{\mathbb {R} ^{d}}\vert f\vert ^{p}\right)^{\frac {1}{p}}\left(\int _{\mathbb {R} ^{d}}\vert g\vert ^{q}\right)^{\frac {1}{q}}\left(\int _{\mathbb {R} ^{d}}\vert h\vert ^{r}\right)^{\frac {1}{r}}}
Young's convolution inequality has a natural generalization in which we replace R d {\displaystyle \mathbb {R} ^{d}} by a unimodular group G . {\displaystyle G.} If we let μ {\displaystyle \mu } be a bi-invariant Haar measure on G {\displaystyle G} and we let f , g : G → R {\displaystyle f,g:G\to \mathbb {R} } or C {\displaystyle \mathbb {C} } be integrable functions, then we define f ∗ g {\displaystyle f*g} by f ∗ g ( x ) = ∫ G f ( y ) g ( y − 1 x ) d μ ( y ) . {\displaystyle f*g(x)=\int _{G}f(y)g(y^{-1}x)\,\mathrm {d} \mu (y).} Then in this case, Young's inequality states that for f ∈ L p ( G , μ ) {\displaystyle f\in L^{p}(G,\mu )} and g ∈ L q ( G , μ ) {\displaystyle g\in L^{q}(G,\mu )} and p , q , r ∈ [ 1 , ∞ ] {\displaystyle p,q,r\in [1,\infty ]} such that 1 p + 1 q = 1 r + 1 {\displaystyle {\frac {1}{p}}+{\frac {1}{q}}={\frac {1}{r}}+1} we have a bound ‖ f ∗ g ‖ r ≤ ‖ f ‖ p ‖ g ‖ q . {\displaystyle \lVert f*g\rVert _{r}\leq \lVert f\rVert _{p}\lVert g\rVert _{q}.} Equivalently, if p , q , r ≥ 1 {\displaystyle p,q,r\geq 1} and 1 p + 1 q + 1 r = 2 {\textstyle {\frac {1}{p}}+{\frac {1}{q}}+{\frac {1}{r}}=2} then | ∫ G ∫ G f ( x ) g ( y − 1 x ) h ( y ) d μ ( x ) d μ ( y ) | ≤ ( ∫ G | f | p ) 1 p ( ∫ G | g | q ) 1 q ( ∫ G | h | r ) 1 r . {\displaystyle \left|\int _{G}\int _{G}f(x)g(y^{-1}x)h(y)\,\mathrm {d} \mu (x)\,\mathrm {d} \mu (y)\right|\leq \left(\int _{G}\vert f\vert ^{p}\right)^{\frac {1}{p}}\left(\int _{G}\vert g\vert ^{q}\right)^{\frac {1}{q}}\left(\int _{G}\vert h\vert ^{r}\right)^{\frac {1}{r}}.} Since R d {\displaystyle \mathbb {R} ^{d}} is in fact a locally compact abelian group (and therefore unimodular) with the Lebesgue measure the desired Haar measure, this is in fact a generalization.
This generalization may be refined. Let G {\displaystyle G} and μ {\displaystyle \mu } be as before and assume 1 < p , q , r < ∞ {\displaystyle 1<p,q,r<\infty } satisfy 1 p + 1 q = 1 r + 1. {\textstyle {\tfrac {1}{p}}+{\tfrac {1}{q}}={\tfrac {1}{r}}+1.} Then there exists a constant C {\displaystyle C} such that for any f ∈ L p ( G , μ ) {\displaystyle f\in L^{p}(G,\mu )} and any measurable function g {\displaystyle g} on G {\displaystyle G} that belongs to the weak L q {\displaystyle L^{q}} space L q , w ( G , μ ) , {\displaystyle L^{q,w}(G,\mu ),} which by definition means that the following supremum ‖ g ‖ q , w q := sup t > 0 t q μ ( | g | > t ) {\displaystyle \|g\|_{q,w}^{q}~:=~\sup _{t>0}\,t^{q}\mu (|g|>t)} is finite, we have f ∗ g ∈ L r ( G , μ ) {\displaystyle f*g\in L^{r}(G,\mu )} and ‖ f ∗ g ‖ r ≤ C ‖ f ‖ p ‖ g ‖ q , w . {\displaystyle \|f*g\|_{r}~\leq ~C\,\|f\|_{p}\,\|g\|_{q,w}.}
An example application is that Young's inequality can be used to show that the heat semigroup is a contracting semigroup using the L 2 {\displaystyle L^{2}} norm (that is, the Weierstrass transform does not enlarge the L 2 {\displaystyle L^{2}} norm).
Proof by Hölder's inequality[ edit ] Young's inequality has an elementary proof with the non-optimal constant 1.[ 4]
We assume that the functions f , g , h : G → R {\displaystyle f,g,h:G\to \mathbb {R} } are nonnegative and integrable, where G {\displaystyle G} is a unimodular group endowed with a bi-invariant Haar measure μ . {\displaystyle \mu .} We use the fact that μ ( S ) = μ ( S − 1 ) {\displaystyle \mu (S)=\mu (S^{-1})} for any measurable S ⊆ G . {\displaystyle S\subseteq G.} Since p ( 2 − 1 q − 1 r ) = q ( 2 − 1 p − 1 r ) = r ( 2 − 1 p − 1 q ) = 1 {\textstyle p(2-{\tfrac {1}{q}}-{\tfrac {1}{r}})=q(2-{\tfrac {1}{p}}-{\tfrac {1}{r}})=r(2-{\tfrac {1}{p}}-{\tfrac {1}{q}})=1} ∫ G ∫ G f ( x ) g ( y − 1 x ) h ( y ) d μ ( x ) d μ ( y ) = ∫ G ∫ G ( f ( x ) p g ( y − 1 x ) q ) 1 − 1 r ( f ( x ) p h ( y ) r ) 1 − 1 q ( g ( y − 1 x ) q h ( y ) r ) 1 − 1 p d μ ( x ) d μ ( y ) {\displaystyle {\begin{aligned}&\int _{G}\int _{G}f(x)g(y^{-1}x)h(y)\,\mathrm {d} \mu (x)\,\mathrm {d} \mu (y)\\={}&\int _{G}\int _{G}\left(f(x)^{p}g(y^{-1}x)^{q}\right)^{1-{\frac {1}{r}}}\left(f(x)^{p}h(y)^{r}\right)^{1-{\frac {1}{q}}}\left(g(y^{-1}x)^{q}h(y)^{r}\right)^{1-{\frac {1}{p}}}\,\mathrm {d} \mu (x)\,\mathrm {d} \mu (y)\end{aligned}}} By the Hölder inequality for three functions we deduce that ∫ G ∫ G f ( x ) g ( y − 1 x ) h ( y ) d μ ( x ) d μ ( y ) ≤ ( ∫ G ∫ G f ( x ) p g ( y − 1 x ) q d μ ( x ) d μ ( y ) ) 1 − 1 r ( ∫ G ∫ G f ( x ) p h ( y ) r d μ ( x ) d μ ( y ) ) 1 − 1 q ( ∫ G ∫ G g ( y − 1 x ) q h ( y ) r d μ ( x ) d μ ( y ) ) 1 − 1 p . {\displaystyle {\begin{aligned}&\int _{G}\int _{G}f(x)g(y^{-1}x)h(y)\,\mathrm {d} \mu (x)\,\mathrm {d} \mu (y)\\&\leq \left(\int _{G}\int _{G}f(x)^{p}g(y^{-1}x)^{q}\,\mathrm {d} \mu (x)\,\mathrm {d} \mu (y)\right)^{1-{\frac {1}{r}}}\left(\int _{G}\int _{G}f(x)^{p}h(y)^{r}\,\mathrm {d} \mu (x)\,\mathrm {d} \mu (y)\right)^{1-{\frac {1}{q}}}\left(\int _{G}\int _{G}g(y^{-1}x)^{q}h(y)^{r}\,\mathrm {d} \mu (x)\,\mathrm {d} \mu (y)\right)^{1-{\frac {1}{p}}}.\end{aligned}}} The conclusion follows then by left-invariance of the Haar measure, the fact that integrals are preserved by inversion of the domain, and by Fubini's theorem .
Proof by interpolation [ edit ] Young's inequality can also be proved by interpolation; see the article on Riesz–Thorin interpolation for a proof.
In case p , q > 1 , {\displaystyle p,q>1,} Young's inequality can be strengthened to a sharp form, via ‖ f ∗ g ‖ r ≤ c p , q ‖ f ‖ p ‖ g ‖ q . {\displaystyle \|f*g\|_{r}\leq c_{p,q}\|f\|_{p}\|g\|_{q}.} where the constant c p , q < 1. {\displaystyle c_{p,q}<1.} [ 5] [ 6] [ 7] When this optimal constant is achieved, the function f {\displaystyle f} and g {\displaystyle g} are multidimensional Gaussian functions .
^ Young, W. H. (1912), "On the multiplication of successions of Fourier constants", Proceedings of the Royal Society A , 87 (596): 331–339, doi :10.1098/rspa.1912.0086 , JFM 44.0298.02 , JSTOR 93120 ^ Bogachev, Vladimir I. (2007), Measure Theory , vol. I, Berlin, Heidelberg, New York: Springer-Verlag, ISBN 978-3-540-34513-8 , MR 2267655 , Zbl 1120.28001 , Theorem 3.9.4 ^ Lieb, Elliott H. ; Loss, Michael (2001). Analysis . Graduate Studies in Mathematics (2nd ed.). Providence, R.I.: American Mathematical Society. p. 100. ISBN 978-0-8218-2783-3 . OCLC 45799429 . ^ Beckner, William (1975). "Inequalities in Fourier Analysis". Annals of Mathematics . 102 (1): 159–182. doi :10.2307/1970980 . JSTOR 1970980 . ^ Brascamp, Herm Jan; Lieb, Elliott H (1976-05-01). "Best constants in Young's inequality, its converse, and its generalization to more than three functions". Advances in Mathematics . 20 (2): 151–173. doi :10.1016/0001-8708(76)90184-5 . ^ Fournier, John J. F. (1977), "Sharpness in Young's inequality for convolution" , Pacific Journal of Mathematics , 72 (2): 383–397, doi :10.2140/pjm.1977.72.383 , MR 0461034 , Zbl 0357.43002