במתמטיקה, סדרה חשבונית היא סדרה של מספרים, שבה ההפרש בין כל שני איברים עוקבים הוא קבוע: ( הוא האיבר ה- בסדרה). לדוגמה, בסדרה: 3, 5, 7, 9, 11, 13, ..., ההפרש בין כל שני איברים עוקבים הוא מספר קבוע, במקרה זה 2. בסדרה חשבונית, כל איבר מהווה ממוצע חשבוני של האיבר הקודם והאיבר העוקב לו, ומכאן שְׁמָהּ (בדומה לסדרה הנדסית ולסדרה הרמונית).
סדרה חשבונית מוגדרת באמצעות שלושה מאפיינים:
– האיבר הראשון בסדרה
– ההפרש הקבוע בין (כל) שני איברים עוקבים בסדרה
– מספר האיברים בסדרה (שעשוי להיות סופי או אינסופי)
לפי מאפיינים אלה, ניתן לדעת מהו כל אחד מאיברי הסדרה.
ניעזר באינדוקציה: כדי להוכיח את נוסחת האיבר הכללי, נבדוק את נכונותה עבור . במקרה זה, אכן מתקיים . נניח כעת שמתקיים עבור ספציפי כלשהו ונוכיח שמתקיים . נשים לב שמתקיים: , כאשר השוויון הלפני-אחרון נכון בגלל הנחת האינדוקציה.
נתונה סדרה: , כאשר מספר האיברים הוא זוגי והאיבר האחרון הוא (כלומר, יש איברים בסדרה). נחשב את סכום האיברים הזוגיים והאי-זוגיים על פי נוסחת הסכום. יש איברים בסדרה, אז יש איברים שמיקומם זוגי ו- איברים שמקומם אי-זוגי.
סכום האיברים הזוגיים:
הוא האיבר הראשון בסדרה הזוגית, ומכיוון שהפרש הסדרה הוא , אז ההפרש בין כל שני איברים שמקומם זוגי הוא , ולכן סכום האיברים הזוגיים: . נציב במשוואה המקורית. לאחר פישוט נקבל: .
נעשה כך גם עם הסדרה האי-זוגית, ונקבל: .
נחסר את המשוואה השנייה מן המשוואה הראשונה, ונקבל: . מכיוון שמספר האיברים המקורי שלנו הוא ואנו מעוניינים בנוסחה עבור סדרה בת איברים, נחלק את ה- במשוואה שהתקבלה בשתיים (נציב במקום ). נקבל: