Гидросфера Марса

Северная полярная шапка Марса

Гидросфера Марса — совокупность водных запасов планеты Марс, представленная водным льдом в полярных шапках, парами воды и облаками в атмосфере, льдом над поверхностью, сезонными ручьями из жидкой воды и возможными резервуарами жидкой воды и водных растворов солей в верхних слоях литосферы Марса. Гидросфера Марса, вследствие господствующих низких температур на Марсе и нахождения запасов воды в твердом состоянии, также называется криолитосферой.

Поиски воды на Марсе

[править | править код]

Марс весьма схож с Землёй по многим показателям, что заставляло учёных XIX — начала XX века допускать, что на нём есть жизнь и есть жидкая вода. По мере роста объёма данных о планете, собранных различными методами, например, с помощью спектроскопических измерений, стало понятно, что воды в атмосфере Марса ничтожно мало, однако она всё же есть[1]. Прежде всего внимание исследователей привлекли полярные шапки Марса, так как предполагалось, что они могут состоять из водного льда по аналогии с Антарктидой или Гренландией на Земле, однако высказывалась и гипотеза, что это твёрдый диоксид углерода[2]. В пользу последней говорили результаты одного из первых численных экспериментов 1966 года на ЭВМ IBM 7074[3] по моделированию суточных и годовых изменений температуры на поверхности Марса в зависимости от широты и соответствующей динамики полярных шапок для случаев, когда они состоят из H2O и CO2. Авторы этой работы пришли к заключению, что полученная ими годичная вариация размера полярных шапок во втором случае гораздо ближе к наблюдаемой.

На смену астрономическим наблюдениям и спектроскопическому измерению с началом эры космонавтики пришло и прямое изучение Марса и поисков воды на нём с помощью АМС.

Так, на первых подробных изображениях поверхности Марса, полученные аппаратом «Маринер-9», можно видеть сети долин (такие как долины Нергала[4]) — элементы рельефа, свидетельствующие о присутствии в прошлом жидкой воды, в частности, подтопления грунтовыми водами склонов оврагов, поскольку они выглядят идентично эрозионным структурам на Земле, например, на Гавайских островах и в каньонах Эскаланте[англ.] плато Колорадо[5][6].

Помимо разветвлённой сети долин, начиная с этих ранних снимков «Маринера-9» различают[7] элементы рельефа, связанные с интенсивным разливом и называемые каналами оттока. Они выглядят как уменьшенная копия крупнейших земных дилювиальных форм. На сегодняшний день считается общепризнанной гипотеза, что происхождение этих каналов также связано именно с жидкой водой, хотя теоретически возможны и другие варианты. Каналы оттока в основном моложе сетей долин, хотя встречаются и достаточно древние образования. По всей видимости, они сформировались в период, когда условия на поверхности Марса были примерно такими же, как сейчас[8].

Равновеликая азимутальная проекция Ламберта рельефа поверхности Марса от северного полюса до экватора, отснятого высотомером MOLA[англ.]. Граница Северной низменности сильно напоминает берег океана, возможно, покрывавшего эту площадь в древности.

В конце 1990-х годов аппаратом Mars Global Surveyor были собраны топографические данные с помощью высотомера MOLA[англ.], на основании которых составлены полные карты рельефа поверхности Марса. Помимо многочисленных сетей долин и каналов оттока, на них хорошо просматривается район Северной низменности, и его граница — зона контакта[англ.] — сильно напоминает берег постоянного водоёма. В пользу гипотезы океана[англ.] свидетельствует то, что линия контакта практически эквипотенциальна; параллельно ей располагаются характерные террасы; заключённый внутри неё объём согласуется с оценками объёма жидкой воды на раннем Марсе; поверхность низменности гораздо более гладкая, чем её окрестности[9][10]. Впоследствии ещё одним аргументом в поддержку этой теории стал также анализ распределения элементов рельефа, подобных речным дельтам: многие из них расположены вдоль этой береговой линии, в частности, на одной и той же высоте[11].

Аппаратом Mars Global Surveyor были получены и обычные снимки, и их анализ в 2000 году подтвердил существование каналов, сформированных потоками жидкой воды, а также песка и грязевых отложений, оставленных этими потоками. Эти элементы рельефа были настолько свежими, что можно говорить о том, что они формируются и в настоящий период[12][13]. Позже наличие на тёплых склонах так называемых сезонных поверхностных линий[англ.][14] — темных полос, появляющихся на поверхности планеты в теплое время года и похожих на отложения солей, — было засвидетельствовано снимками камеры HiRISE на орбитальном аппарате Mars Reconnaissance Orbiter[15]. А с помощью спектрометра CRISM на его борту в 2015 году наконец было подтверждено, что они образуются на месте периодических потоков солёной воды в жидком состоянии[16][17][18]. Активные исследования сезонных поверхностных линий продолжаются[19][20], в том числе и с помощью других инструментов, например, THEMIS[англ.] на орбитальном аппарате «Марс Одиссей»[21].

В начале 2000-х годов с помощью гамма-спектрометра на орбитальном аппарате «Марс Одиссей» было обнаружено большое количество водорода в приповерхностном слое Марса — особенно в приполярных областях — что, скорее всего, свидетельствует о нахождении там колоссального количества (35 ± 15 % слоя по весу) воды в твёрдом состоянии[22]. Присутствие льда было подтверждено данными марсохода «Феникс», работавшего возле северного полюса планеты: белое вещество, обнаруженное на дне вырытой им небольшой траншеи, испарилось за несколько дней, что характерно именно для льда[23][24]. Аналогичный процесс был зарегистрирован аппаратом Mars Reconnaissance Orbiter и для вещества на дне свежих кратеров, в том числе и на низких широтах[25][26]. На снимках аппаратов Mars Global Surveyor, «Марс Одиссей»[27], Mars Reconnaissance Orbiter[28] и «Марс Экспресс»[29] можно видеть ещё одно свидетельство повсеместного присутствия льда в приповерхностном слое Марса — формы рельефа, напоминающие земные ледники. А радиолокатор SHARAD на аппарате Mars Reconnaissance Orbiter подтвердил, что под тонким слоем пыли и грязи в этих образованиях (в том числе в средних широтах) действительно находится лёд[30].

В 2022 году китайскими учёными были получены доказательства того, что вода на Марсе оставалась в жидком виде гораздо дольше, чем считалось ранее. Марсоход «Чжужун» обнаружил на равнине Утопия гидратированные отложения и минералы, возраст которых оценивается в 757 ± 66 млн лет, что свидетельствует о присутствии большого количества воды на Марсе в то время[31][32].

В 2024 году были опубликованы результаты проведенного под руководством Вашана Райта, геофизика из Калифорнийского университета в Сан-Диего анализа данных, собранных аппаратом InSight в ходе четырехлетней миссии, которая завершилась в 2022 году. Исследователи пришли к выводу, что наличие жидкой воды в коре Марса на глубине 11,5 — 20 км наиболее правдоподобно объясняет полученные данные[33][34].

Запасы воды на Марсе в настоящее время

[править | править код]
Кратер Королёв, содержащий 2200 кубических километров льда — примерно столько, сколько воды в канадском Большом Медвежьем озере[35].
Содержание льда в приповерхностном слое, измеренное аппаратом «Марс Одиссей» на низких широтах (слева) и в приполярных областях (справа).

В настоящее время открытые и достоверно установленные объёмы воды на Марсе сосредоточены преимущественно в так называемой криосфере — приповерхностном слое вечной мерзлоты мощностью в десятки и сотни метров. Бо́льшая часть этого льда находится под поверхностью планеты, поскольку при нынешних климатических условиях не может существовать стабильно и оказавшись на поверхности, быстро испаряется; только в приполярных областях температура достаточно низкая для стабильного существования льда в течение всего года — это полярные шапки. Общий объём льда на поверхности и в приповерхностном слое оценивается в 5 млн км³ (а в более глубоких слоях, вероятно, могут быть сосредоточены гораздо бо́льшие запасы подмерзлотных солёных вод. Их объём оценивается в 54-77 млн км³). В расплавленном состоянии он покрыл бы поверхность Марса слоем воды толщиной 35 м[36][37].

На полюсах концентрация водного льда в криосфере ожидаемо высока — до 100 %. Объём льда в полярных шапках планеты составляет 2-2,8 млн км³. На широтах выше 60° она практически везде не менее 20 %; ближе к экватору — в среднем несколько ниже, но всё же повсюду отлична от нуля, больше всего — до 10 % — в районе вулканов в Элизиуме, в Сабейской земле[англ.] и к северу от земли Сирен[англ.].

25 июля 2018 года вышел доклад об открытии, основанном на исследованиях радаром MARSIS. Работы показали наличие подлёдного озера на Марсе, расположенного на глубине 1,5 км подо льдом Южной полярной шапки, шириной около 20 км. Это стало первым известным постоянным водоёмом на Марсе. Зондирование области шириной около 200 километров с помощью MARSIS показало, что поверхность Южного полюса Марса покрыта несколькими слоями льда и пыли и глубиной около 1,5 км. Особенно мощное усиление отражения сигнала было зафиксировано под слоистыми отложениями в пределах 20-километровой зоны на глубине около 1,5 км. Проанализировав свойства отраженного сигнала и изучив состав слоистых отложений, а также ожидаемый температурный профиль под поверхностью этой области, ученые пришли к выводу, что радар обнаружил под поверхностью карман с озером из жидкой воды. Прибор не смог определить, насколько глубоким может быть озеро, но его глубина должна составлять как минимум несколько десятков сантиметров (таким должен быть слой воды, чтобы его увидел MARSIS)[38][39]. Однако, повторный анализ радарных данных аппарата Mars Express и лабораторные эксперименты показали, что так называемые «озёра» могут являться гидратированными и холодными отложениями, включающими глину (смектиты), минералы, содержащие металлы, и солёный лёд[40].

Вода на Марсе в прошлом

[править | править код]

Долгосрочные изменения климата

[править | править код]

Водяной лёд не может стабильно существовать на Марсе при сегодняшних климатических условиях, однако подтверждено, что он присутствует в приповерхностном слое практически повсеместно, в том числе в приэкваториальных областях. Наиболее вероятно, что он оказался там в более ранний период эволюции планеты, когда угол наклона оси вращения Марса достигал больших значений порядка 45°. Численное моделирование показало, что при этом в полярных областях, которые становятся самыми тёплыми участками, H2O и CO2 сублимируются в атмосферу, затем вода конденсируется в лёд и снег в низких широтах, где теперь холодно, и таким образом полярные шапки смещаются к экватору[41]. Подтверждением этому являются обнаруживаемые во многих (в том числе приэкваториальных) областях Марса формы рельефа, напоминающие земные ледники: очевидно, что они сформировались именно в такой период[29]. Наоборот, когда наклон оси вращения уменьшается, в полярных областях снова становится холоднее, а в экваториальных — теплее; вода, замёрзшая там в приповерхностных слоях, сублимируется и снова конденсируется в ледяные полярные шапки[42]. Последовательное чередование этих периодов можно отследить по формирующимся таким образом слоистым отложениям в полярных шапках, однако для этого необходимо сделать допущение о том, сколько времени требуется на образование каждого слоя[43][44]. На предмет того, насколько частыми были такие смены, продолжается дискуссия: моделирование климата (ключевое влияние на который оказывает хаотический процесс изменения наклона угла оси вращения), особенно в геологических временных масштабах, на сегодняшний день невозможно с требуемой точностью[45][46].

Жидкая вода не может стабильно существовать на поверхности Марса при нынешних климатических условиях.

Вода (по крайней мере чистая) в жидком состоянии сейчас также не может существовать на Марсе стабильно, однако судя по многочисленным свидетельствам, ранее ситуация была иной. Очевидно, что для этого температура и парциальное давление водяного пара в атмосфере должны были быть выше тройной точки на фазовой диаграмме, тогда как сейчас они далеки от соответствующих значений. Если повысится только температура, а давление останется низким, лёд сублимируется напрямую в водяной пар, минуя жидкую фазу. Между тем, даже повысить температуру на 50° очень затруднительно и возможно лишь посредством парникового эффекта. Однако лавинный парниковый эффект за счёт паров воды в атмосфере, в отличие от Земли, на Марсе невозможен из-за низких температур, при которых водяной пар не сможет стабильно оставаться в атмосфере и неизбежно сконденсируется на поверхности планеты обратно в лёд. Но другой парниковый газ — CO2 — вполне может существовать в условиях Марса, и благодаря ему температура может повыситься до значений, при которых стабилен водяной пар, а когда его становится в атмосфере больше, его парциальное давление может стать достаточным уже для существования жидкой воды. Для этого необходимо парциальное давление углекислого газа порядка 1 атм[47]. Правда, если даже такой механизм имел место, неизвестно, куда делся теперь весь этот объём CO2, — он мог остаться в отложениях карбоната кальция либо улетучиться с остальной атмосферой[46].

Ряд авторов не разделяет эту гипотезу, полагая, что углекислый газ не может обеспечить достаточной интенсивности парникового эффекта[48][49]. Предлагались механизмы, задействующие другие парниковые газы, например, водород, предположительно вулканического происхождения[50]. На сегодняшний день на этот счёт нет общепринятой теории, во многом из-за трудностей моделирования парникового эффекта даже на Земле, в котором и по настоящий момент остаётся много неопределённости[51].

Эволюция гидросферы Марса

[править | править код]
Расположение проточных палеоозёр, включая 30, атрибутированных по геологическим эпохам

Большой интерес в геологическом прошлом планеты Марс вызывают два периода — гесперийский и амазонийский[52].

Гесперийский период

[править | править код]
Так мог бы выглядеть древний Марс, если бы на нём был океан.

В гесперийском периоде (3,5—2,5 млрд лет назад) Марс достиг вершины своей эволюции и имел постоянную гидросферу[53]. Северную равнину планеты в то время занимал солёный океан объёмом до 15-17 млн км³ и глубиной 0,7—1 км (для сравнения, Северный Ледовитый океан Земли имеет объём 18,07 млн км³). В отдельные промежутки времени этот океан распадался на два. Один океан, округлый, заполнял бассейн ударного происхождения в районе Утопии, другой, неправильной формы, — район Северного полюса Марса. В умеренных и низких широтах было много озёр и рек, на Южном плато — ледники. Марс обладал очень плотной атмосферой, аналогичной той, которая в то время была у Земли, при температуре у поверхности доходившей до 50 °C и давлении свыше 1 атмосферы. Теоретически в гесперийском периоде на Марсе могла существовать и биосфера.

Амазонийский период

[править | править код]

В амазонийском периоде (около 2,5—1 млрд лет назад) климат на Марсе стал катастрофически быстро меняться. Происходили мощнейшие, но постепенно затухающие глобальные тектонические и вулканические процессы, в ходе которых возникли крупнейшие в Солнечной системе вулканы (Олимп), несколько раз сильно изменялись характеристики самой гидросферы и атмосферы, появлялся и исчезал Северный океан. Катастрофические наводнения, связанные с таянием криосферы привели к образованию грандиозных каньонов: в долину Ареса с южных нагорий Марса стекал поток полноводнее Амазонки; расход воды в долине Касей превышал 1 млрд м³/с. Миллиард лет назад активные процессы в литосфере, гидросфере и атмосфере Марса прекратились, и он принял современный облик. Виной глобальных катастрофических изменений марсианского климата считаются большой эксцентриситет орбиты и неустойчивость оси вращения, вызывающие огромные, до 45 %, колебания потока солнечной энергии, падающей на поверхность планеты; слабый приток тепла из недр Марса, обусловленный небольшой массой планеты, и высокой разрежённостью атмосферы, обусловленной высокой степенью её диссипации.

Примечания

[править | править код]
  1. Spinrad, Hyron; Münch, Guido; Kaplan, Lewis D. Letter to the Editor: the Detection of Water Vapor on Mars : [англ.] : [арх. 21 октября 2022] // Astrophysical Journal. — 1963. — Т. 137 (May). — С. 1319—1319. — doi:10.1086/147613.
  2. Stoney, G. Johnstone. Of Atmospheres upon Planets and Satellites : [арх. 3 марта 2022] // Astrophysical Journal. — 1898. — Т. 7 (январь). — С. 25—55. — Bibcode1898ApJ.....7...25S. — doi:10.1086/140435.
  3. R.B. Leighton, B.C. Murray. Behavior of Carbon Dioxide and Other Volatiles on Mars : [англ.] : [арх. 3 марта 2022] // Science. — 1966. — Т. 153, № 3732 (8 July). — С. 136—144. — ISSN 0036-8075. — doi:10.1126/science.153.3732.136.
  4. PIA15090: Mariner 9 View of Nirgal Vallis (англ.). NASA (21 ноября 2011). Дата обращения: 24 июня 2017. Архивировано 13 сентября 2015 года.
  5. Daniel J. Milton. Water and processes of degradation in the Martian landscape : [англ.] // Journal of Geophysical Research. — 1973. — Т. 78, вып. 20 (10 July). — С. 4037—4047. — doi:10.1029/JB078i020p04037.
  6. Virginia C Gulick. Origin of the valley networks on Mars: a hydrological perspective : [англ.] : [арх. 1 мая 2017] // Geomorphology. — 2001. — Т. 37, вып. 3—4 (April). — С. 241—268. — doi:10.1016/S0169-555X(00)00086-6.
  7. ROBERT P. SHARP, MICHAEL C. MALIN. Channels on Mars : [англ.] // GSA Bulletin. — 1975. — Т. 86, № 5 (1 May). — С. 593—609. — doi:10.1130/0016-7606(1975)86<593:COM>2.0.CO;2.
  8. Michael H. Carr. The fluvial history of Mars : [англ.] : [арх. 6 августа 2017] // Philosophical Transactions of the Royal Society A. — 2012. — Т. 370 (2 April). — С. 2193—2215. — doi:10.1098/rsta.2011.0500.
  9. James W. Head III, Harald Hiesinger, Mikhail A. Ivanov, Mikhail A. Kreslavsky, Stephen Pratt, Bradley J. Thomson. Possible Ancient Oceans on Mars: Evidence from Mars Orbiter Laser Altimeter Data : [англ.] : [арх. 21 декабря 2016] // Science. — 1999. — Т. 286 (10 December). — С. 2134—2137. — doi:10.1126/science.286.5447.2134.
  10. J. Taylor Perron, Jerry X. Mitrovica, Michael Manga, Isamu Matsuyama & Mark A. Richards. Evidence for an ancient martian ocean in the topography of deformed shorelines : [англ.] // Nature. — 2007. — Т. 447 (14 July). — С. 840—843. — doi:10.1038/nature05873.
  11. Gaetano Di Achille & Brian M. Hynek. Ancient ocean on Mars supported by global distribution of deltas and valleys : [англ.] // Nature Geoscience. — 2010. — Т. 3 (June). — С. 459—463. — doi:10.1038/ngeo891.
  12. Michael C. Malin, Kenneth S. Edgett. Evidence for Recent Groundwater Seepage and Surface Runoff on Mars : [англ.] // Science. — 2000. — Т. 288, вып. 5475 (30 June). — С. 2330—2335. — doi:10.1126/science.288.5475.2330.
  13. Charles Q. Choi. Flashback: Water on Mars Announced 10 Years Ago (англ.). Space.com (22 июня 2010). Дата обращения: 16 июля 2017. Архивировано 23 ноября 2021 года.
  14. Kirby Runyon, Lujendra Ojha. Recurring Slope Lineae // Encyclopedia of Planetary Landforms. — Springer New York, 2014. — С. 1—6. — ISBN 978-1-4614-9213-9. Архивировано 6 августа 2017 года.
  15. Alfred S. McEwen, Lujendra Ojha, Colin M. Dundas, Sarah S. Mattson, Shane Byrne, James J. Wray, Selby C. Cull, Scott L. Murchie, Nicolas Thomas, Virginia C. Gulick. Seasonal Flows on Warm Martian Slopes : [англ.] // Science. — 2011. — Т. 333, вып. 6043 (5 August). — С. 740—743. — doi:10.1126/science.1204816.
  16. Lujendra Ojha, Mary Beth Wilhelm, Scott L. Murchie, Alfred S. McEwen, James J. Wray, Jennifer Hanley, Marion Massé and Matt Chojnacki. Spectral evidence for hydrated salts in recurring slope lineae on Mars : [англ.] // Nature Geoscience. — 2015. — Т. 8 (28 September). — С. 829—832. — doi:10.1038/NGEO2546.
  17. "Ученые: полосы на Марсе остаются от потоков воды". BBC Русская служба. 2015-09-28. Архивировано 30 января 2016. Дата обращения: 30 сентября 2015.
  18. Королёв, Владимир (2015-09-28). "На Марсе обнаружена жидкая соленая вода". N+1. Архивировано 29 сентября 2015. Дата обращения: 6 августа 2017.
  19. "Сезонные потоки в долине Маринера". Новости астрономии и астрофизики — The Universe Times. 2017-05-24. Архивировано 7 августа 2017. Дата обращения: 6 августа 2017.
  20. David E.Stillman, Timothy I.Michaels, Robert E.Grimm. Characteristics of the numerous and widespread recurring slope lineae (RSL) in Valles Marineris, Mars : [англ.] // Icarus. — 2017. — Т. 285 (15 March). — С. 195—210. — doi:10.1016/j.icarus.2016.10.025.
  21. Christopher S. Edwards, Sylvain Piqueux. The water content of recurring slope lineae on Mars : [англ.] // Geophysical Research Letters. — 2016. — Т. 43, вып. 17 (14 September). — С. 8912—8919. — doi:10.1002/2016GL070179.
  22. W. V. Boynton, W. C. Feldman, S. W. Squyres, T. H. Prettyman, J. Brückner, L. G. Evans, R. C. Reedy, R. Starr, J. R. Arnold, D. M. Drake, P. A. J. Englert, A. E. Metzge, Igor Mitrofanov, J. I. Trombka, C. d'Uston, H. Wänke, O. Gasnault, D. K. Hamara, D. M. Janes, R. L. Marcialis, S. Maurice, I. Mikheeva, G. J. Taylor, R. Tokar, C. Shinohara. Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits : [англ.] // Science. — 2002. — Т. 297, вып. 5578 (5 July). — С. 81—85. — doi:10.1126/science.1073722.
  23. Тунцов, Артём (2008-06-20). "Phoenix докопался до воды". Газета.ru. Архивировано 6 августа 2017. Дата обращения: 3 августа 2017.
  24. "NASA Phoenix Mars Lander Confirms Frozen Water". Phoenix Mars Lander. NASA. 2020-08-06. Архивировано 19 мая 2017. Дата обращения: 3 августа 2017.
  25. "New Impact Craters on Mars". Mars Reconnaissance Orbiter Mission. NASA. 2009-09-24. Архивировано 17 января 2022. Дата обращения: 3 августа 2017.
  26. Shane Byrne et al. Distribution of Mid-Latitude GroundIce on Mars from New Impact Craters : [англ.] : [арх. 3 марта 2022] // Science. — 2009. — Т. 325, вып. 5948. — С. 1674. — doi:10.1126/science.1175307.
  27. David E. Shean, James W. Head, David R. Marchant. Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit : [англ.] // J. Geophys. Res.. — 2005. — Т. 110 (5 May). — С. E05001. — doi:10.1029/2004JE002360.
  28. 1 2 James L. Dickson, James W. Head, David R. Marchant. Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases : [англ.] // Geology. — 2008. — Т. 36, № 5 (May). — С. 411—414. — doi:10.1130/G24382A.1.
  29. 1 2 Head, J. W., et al. Tropical to mid-latitude snow and ice accumulation flow and glaciation on Mars : [арх. 12 августа 2017] // Nature. — 2005. — Т. 434 (17 марта). — С. 346—351. — doi:10.1038/nature03359.
  30. John W. Holt et al. Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars : [англ.] // Science. — 2008. — Т. 322, вып. 5905 (21 November). — С. 1235—1238. — doi:10.1126/science.1164246.
  31. Архивированная копия. Дата обращения: 29 мая 2022. Архивировано 28 мая 2022 года.
  32. Zhao, J., Xiao, Z., Huang, J., Head, J. W., Wang, J., Shi, Y., et al. Geological Characteristics and Targets of High Scientific Interest in the Zhurong Landing Region on Mars (англ.) // Geophysical Research Letters. — 2021. — Vol. 48, no. 20. — P. e2021GL094903.
  33. Ученые впервые обнаружили на Марсе воду в жидком состоянии (14 августа 2024). Дата обращения: 20 августа 2024.
  34. Wright, Vashan; Morzfeld, Matthias; Manga, Michael (August 12, 2024). David Kohlstedt (ed.). "Liquid water in the Martian mid-crust". PNAS. 121 (35): e2409983121. doi:10.1073/pnas.2409983121. PMID 39133865.
  35. A winter wonderland in red and white – Korolev Crater on Mars (англ.). German Aerospace Center (DLR) (20 декабря 2018). Дата обращения: 18 мая 2019. Архивировано 17 октября 2020 года.
  36. Ice (англ.). Mars Education at Arizona State University. NASA. Дата обращения: 7 августа 2017. Архивировано 12 августа 2017 года.
  37. Кузьмин Р. О., Галкин И. Н. Криолитосфера Марса и ее строение // Как устроен Марс. — Москва: Знание, 1989. — Т. 8. — 64 с. — (Космонавтика, астрономия). — 26 953 экз. — ISBN 5-07000280-5. Архивировано 29 января 2018 года.
  38. Halton, Mary (2018-07-25). "Liquid water 'lake' revealed on Mars". BBC News (англ.). Архивировано 25 июля 2018. Дата обращения: 28 июля 2018.
  39. Ashley Strickland (2018-07-25). "Evidence detected of lake beneath Mars' surface". CNN. Архивировано 27 июля 2018. Дата обращения: 28 июля 2018.
  40. Clays, Not Water, Are Likely Source of Mars 'Lakes' Архивная копия от 7 августа 2021 на Wayback Machine, July 29, 2021
  41. F. Forget, R. M. Haberle, F. Montmessin, B. Levrard, J. W. Head. Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity : [англ.] // Science. — 2006. — Т. 311, вып. 5759 (20 January). — С. 368—371. — doi:10.1126/science.1120335.
  42. Benjamin Levrard, François Forget, Franck Montmessin & Jacques Laskar. Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity : [англ.] // Nature. — 2004. — Т. 431 (28 November). — С. 1072—1075. — doi:10.1038/nature03055.
  43. Laskar, Jacques; Levrard, Benjamin; Mustard, John F. Orbital forcing of the martian polar layered deposits : [англ.] : [арх. 13 августа 2017] // Nature. — 2002. — Т. 419, № 6905 (26 September). — С. 375—377. — doi:10.1038/nature01066.
  44. Levrard, B., F. Forget, F. Montmessin, and J. Laskar. Recent formation and evolution of northern Martian polar layered deposits as inferred from a Global Climate Model : [англ.] : [арх. 13 августа 2017] // J. Geophys. Res.. — 2007. — Т. 112, вып. E6 (28 June). — С. E06012. — doi:10.1029/2006JE002772.
  45. Edwin S. Kite, Michael Andrew Mischna, Mohit Melwani Daswani. Quantifying the effect of Mars obliquity on the intermittency of post-Noachian surface liquid water (англ.) (2014). Дата обращения: 12 августа 2017. Архивировано 12 сентября 2015 года.
  46. 1 2 N. Mangold, D. Baratoux, O. Witasse, T. Encrenaz, C. Sotin. Mars: a small terrestrial planet : [англ.] : [арх. 31 июля 2017] // The Astronomy and Astrophysics Review. — 2016. — Т. 24, № 1 (16 December). — С. 15. — doi:10.1007/s00159-016-0099-5.
  47. J.B.Pollack, J.F.Kasting. The case for a wet, warm climate on early Mars : [англ.] // Icarus. — Т. 71, вып. 2. — С. 203—224. — doi:10.1016/0019-1035(87)90147-3.
  48. R. Wordsworth, F. Forget, E. Millour, J.W. Head, J.-B. Madeleine, B. Charnay. Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution : [англ.] : [арх. 13 августа 2017] // Icarus. — 2013. — Т. 222, вып. 1 (January). — С. 1—19. — doi:10.1016/j.icarus.2012.09.036.
  49. Chevrier, Vincent; Poulet, Francois; Bibring, Jean-Pierre. Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates : [англ.] : [арх. 13 августа 2017] // Nature. — 2007. — Т. 448 (5 July). — С. 60—63. — doi:10.1038/nature0596160.
  50. Ramses M. Ramirez. A warmer and wetter solution for early Mars and the challenges with transient warming : [англ.] // Icarus. — 2017. — Т. 297 (15 November). — С. 71—82. — doi:10.1016/j.icarus.2017.06.025.
  51. Greicius, Tony (2017-02-06). "NASA's Curiosity Rover Sharpens Paradox of Ancient Mars". NASA. Архивировано 9 февраля 2017. Дата обращения: 29 июля 2017.
  52. Determining the age of surfaces on Mars. Дата обращения: 17 ноября 2007. Архивировано 19 февраля 2007 года.
  53. The Case of the Missing Mars Water. Дата обращения: 17 ноября 2007. Архивировано из оригинала 26 марта 2010 года.