4-O-Methylhonokiol

From Wikipedia the free encyclopedia

4-O-Methylhonokiol
Names
Preferred IUPAC name
4′-Methoxy-3′,5-di(prop-2-en-1-yl)[1,1′-biphenyl]-2-ol
Other names
3,5′-Diallyl-2′-hydroxy-4-methoxybiphenyl
Identifiers
3D model (JSmol)
ChemSpider
UNII
  • InChI=1S/C19H20O2/c1-4-6-14-8-10-18(20)17(12-14)15-9-11-19(21-3)16(13-15)7-5-2/h4-5,8-13,20H,1-2,6-7H2,3H3
    Key: OQFHJKZVOALSPV-UHFFFAOYSA-N
  • InChI=1/C19H20O2/c1-4-6-14-8-10-18(20)17(12-14)15-9-11-19(21-3)16(13-15)7-5-2/h4-5,8-13,20H,1-2,6-7H2,3H3
    Key: OQFHJKZVOALSPV-UHFFFAOYAP
  • COC1=C(C=C(C=C1)C2=C(C=CC(=C2)CC=C)O)CC=C
Properties
C19H20O2
Molar mass 280.367 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

4-O-Methylhonokiol is a neolignan, a type of phenolic compound. It is found in the bark of Magnolia grandiflora[1] and in M. virginiana flowers.[2]

4-O-Methylhonokiol is a CB2 receptor ligand (Ki = 50 nM), showing inverse agonism and partial agonism via different pathways (cAMP and Ca2+), which potently inhibits osteoclastogenesis.[3] 4-O-Methylhonokiol further attenuates memory impairment in presenilin 2 mutant mice through reduction of oxidative damage and inactivation of astrocytes and the ERK pathway.[4] The different neuroprotective effects reported in rodent models may be mediated via CB2 receptors.[5] 4-O-Methylhonokiol activates CB2 receptors and also inhibits the oxygenation of the major endocannabinoid 2-AG via COX-2 in a substrate-selective manner, thus leading to potential synergistic effects at CB receptors.[6] The same study also provided data that 4-O-methylhonokiol can readily pass the blood–brain barrier.

References

[edit]
  1. ^ Clark, Alice M.; El-Feraly, Arouk S.; Li, Wen-Shyong (1981). "Antimicrobial activity of phenolic constituents ofmagnolia grandiflora L". Journal of Pharmaceutical Sciences. 70 (8): 951–2. doi:10.1002/jps.2600700833. PMID 7310672.
  2. ^ Chandra, Amitabh; Nair, Muraleedharan (2007). "Supercritical Carbon Dioxide Extraction and Quantification of Bioactive Neolignans from Magnolia virginiana Flowers". Planta Medica. 61 (2): 192–5. doi:10.1055/s-2006-958051. PMID 7753933. S2CID 28117395.
  3. ^ Schuehly, Paredes; Kleyer, Huefner; Anavi-Goffer, Raduner; Altmann, Gertsch (2011). "Mechanisms of osteoclastogenesis inhibition by a novel class of biphenyl-type cannabinoid CB(2) receptor inverse agonists". Chemistry and Biology. 18 (8): 1053–64. doi:10.1016/j.chembiol.2011.05.012. PMID 21867920.
  4. ^ Lee, Y. J.; Choi, I. S.; Park, M. H.; Lee, Y. M.; Song, J. K.; Kim, Y. H.; Kim, K. H.; Hwang, D. Y.; Jeong, J. H.; Yun, Y. P.; Oh, K. W.; Jung, J. K.; Han, S. B.; Hong, J. T. (2011). "4-O-Methylhonokiol attenuates memory impairment in presenilin 2 mutant mice through reduction of oxidative damage and inactivation of astrocytes and the ERK pathway". Free Radical Biology and Medicine. 50 (1): 66–77. doi:10.1016/j.freeradbiomed.2010.10.698. PMID 20974250.
  5. ^ Gertsch, Anavi-Goffer (2012). "Methylhonokiol attenuates neuroinflammation: a role for cannabinoid receptors?". Journal of Neuroinflammation. 9 (135): 1053–64. doi:10.1186/1742-2094-9-135. PMC 3419612. PMID 22716035.
  6. ^ Chicca, A.; Gachet, M. S.; Petrucci, V.; Schuehly, W.; Charles, R. -P.; Gertsch, J. R. (2015). "4′-O-methylhonokiol increases levels of 2-arachidonoyl glycerol in mouse brain via selective inhibition of its COX-2-mediated oxygenation". Journal of Neuroinflammation. 12: 89. doi:10.1186/s12974-015-0307-7. PMC 4490613. PMID 25962384.