Задача классификации
Из Википедии, бесплатной энциклопедии
Задача классифика́ции — задача, в которой множество объектов (ситуаций) необходимо разделить некоторым образом на классы, при этом задано конечное множество объектов, для которых известно, к каким классам они относятся (выборка), но классовая принадлежность остальных объектов неизвестна. Для решения задачи требуется построить алгоритм, способный классифицировать произвольный объект из исходного множества, то есть указать, к какому классу он относится.
В математической статистике задачи классификации называются также задачами дискриминантного анализа. В машинном обучении задача классификации решается, в частности, с помощью методов искусственных нейронных сетей при постановке эксперимента в виде обучения с учителем.
Существуют также другие способы постановки эксперимента — обучение без учителя, но они используются для решения другой задачи — кластеризации или таксономии. В этих задачах разделение объектов обучающей выборки на классы не задаётся, и требуется классифицировать объекты только на основе их сходства друг с другом. В некоторых прикладных областях, и даже в самой математической статистике, из-за близости задач часто не различают задачи кластеризации от задач классификации.
Некоторые алгоритмы для решения задач классификации комбинируют обучение с учителем с обучением без учителя, например, одна из версий нейронных сетей Кохонена — сети векторного квантования, обучаемые с учителем.
Математическая постановка задачи
[править | править код]Пусть — множество описаний объектов, — множество номеров (или наименований) классов. Существует неизвестная целевая зависимость — отображение , значения которой известны только на объектах конечной обучающей выборки . Требуется построить алгоритм , способный классифицировать произвольный объект .
Вероятностная постановка задачи
[править | править код]Более общей считается вероятностная постановка задачи. Предполагается, что множество пар «объект, класс» является вероятностным пространством с неизвестной вероятностной мерой . Имеется конечная обучающая выборка наблюдений , сгенерированная согласно вероятностной мере . Требуется построить алгоритм , способный классифицировать произвольный объект .
Признаковое пространство
[править | править код]Признаком называется отображение , где — множество допустимых значений признака. Если заданы признаки , то вектор называется признаковым описанием объекта . Признаковые описания допустимо отождествлять с самими объектами. При этом множество называют признаковым пространством.
В зависимости от множества признаки делятся на следующие типы:
- бинарный признак: ;
- номинальный признак: — конечное множество;
- порядковый признак: — конечное упорядоченное множество;
- количественный признак: — множество действительных чисел.
Часто встречаются прикладные задачи с разнотипными признаками, для их решения подходят далеко не все методы.
Типология задач классификации
[править | править код]Типы входных данных
[править | править код]- Признаковое описание — наиболее распространённый случай. Каждый объект описывается набором своих характеристик, называемых признаками. Признаки могут быть числовыми или нечисловыми.
- Матрица расстояний между объектами. Каждый объект описывается расстояниями до всех остальных объектов обучающей выборки. С этим типом входных данных работают немногие методы, в частности, метод ближайших соседей, метод парзеновского окна, метод потенциальных функций.
- Временной ряд или сигнал представляет собой последовательность измерений во времени. Каждое измерение может представляться числом, вектором, а в общем случае — признаковым описанием исследуемого объекта в данный момент времени.
- Изображение или видеоряд.
- Встречаются и более сложные случаи, когда входные данные представляются в виде графов, текстов, результатов запросов к базе данных и так далее. Как правило, они приводятся к первому или второму случаю путём предварительной обработки данных и извлечения признаков.
Классификацию сигналов и изображений называют также распознаванием образов.
Типы классов
[править | править код]- Двухклассовая классификация. Наиболее простой в техническом отношении случай, который служит основой для решения более сложных задач.
- Многоклассовая классификация. Когда число классов достигает многих тысяч (например, при распознавании иероглифов или слитной речи), задача классификации становится существенно более трудной.
- Непересекающиеся классы.
- Пересекающиеся классы. Объект может относиться одновременно к нескольким классам.
- Нечёткие классы. Требуется определять степень принадлежности объекта каждому из классов, обычно это действительное число от 0 до 1.
См. также
[править | править код]- Задачи прогнозирования
- Распознавание образов
- Наивный байесовский классификатор
- Линейный классификатор
- Классификация текстов
Литература
[править | править код]- Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: классификация и снижение размерности. — М.: Финансы и статистика, 1989.
- Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.
- Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение / пер. с анг. А. А. Слинкина. — 2-е изд., испр.. — М.: ДМК Пресс, 2018. — 652 с. — ISBN 978-5-97060-618-6.
- Журавлёв Ю. И., Рязанов В. В., Сенько О. В. «Распознавание». Математические методы. Программная система. Практические применения. — М.: Фазис, 2006. ISBN 5-7036-0108-8.
- Загоруйко Н. Г. Прикладные методы анализа данных и знаний. — Новосибирск: ИМ СО РАН, 1999. ISBN 5-86134-060-9.
- Шлезингер М., Главач В. Десять лекций по статистическому и структурному распознаванию. — Киев: Наукова думка, 2004. ISBN 966-00-0341-2.
- Hastie, T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. — 2nd ed. — Springer-Verlag, 2009. — 746 p. — ISBN 978-0-387-84857-0..
- Mitchell T. Machine Learning. — McGraw-Hill Science/Engineering/Math, 1997. ISBN 0-07-042807-7.
Ссылки
[править | править код]- www.MachineLearning.ru — профессиональный вики-ресурс, посвящённый машинному обучению и интеллектуальному анализу данных
- Константин Воронцов. Курс лекций Математические методы обучения по прецедентам, МФТИ, 2004—2008
- Юрий Лифшиц. Автоматическая классификация текстов (Слайды) — лекция № 6 из курса «Алгоритмы для Интернета»
- kNN и Потенциальная энергия (апплет), Е. М. Миркес и университет Лейстера.