Регрессионный анализ
Из Википедии, бесплатной энциклопедии
Эту страницу предлагается объединить со страницей Регрессия (математика). |
Регрессио́нный анализ — набор статистических методов исследования влияния одной или нескольких независимых переменных на зависимую переменную . Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными или регрессантами. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных (см. Корреляция), а не причинно-следственные отношения. Наиболее распространённый вид регрессионного анализа — линейная регрессия, когда находят линейную функцию, которая, согласно определённым математическим критериям, наиболее соответствует данным. Например, в методе наименьших квадратов вычисляется прямая (или гиперплоскость), сумма квадратов между которой и данными минимальна.
Цели регрессионного анализа
[править | править код]- Определение степени детерминированности вариации критериальной (зависимой) переменной предикторами (независимыми переменными)
- Предсказание значения зависимой переменной с помощью независимой(-ых)
- Определение вклада отдельных независимых переменных в вариацию зависимой
Математическое определение регрессии
[править | править код]Строго регрессионную зависимость можно определить следующим образом. Пусть — случайные величины с заданным совместным распределением вероятностей. Если для каждого набора значений определено условное математическое ожидание
- (уравнение регрессии в общем виде),
то функция называется регрессией величины по величинам , а её график — линией регрессии по , или уравнением регрессии.
Зависимость от проявляется в изменении средних значений при изменении . Хотя при каждом фиксированном наборе значений величина остаётся случайной величиной с определённым распределением.
Для выяснения вопроса, насколько точно регрессионный анализ оценивает изменение при изменении , используется средняя величина дисперсии при разных наборах значений (фактически речь идёт о мере рассеяния зависимой переменной вокруг линии регрессии).
В матричной форме уравнение регрессии (УР) записывается в виде: , где — матрица ошибок. При обратимой матрице X◤X получается вектор-столбец коэффициентов B с учётом U◤U=min(B). В частном случае для Х=(±1) матрица X◤X является рототабельной, и УР может быть использовано при анализе временны́х рядов и обработке технических данных.
Метод наименьших квадратов (расчёт коэффициентов)
[править | править код]На практике линия регрессии чаще всего ищется в виде линейной функции (линейная регрессия), наилучшим образом приближающей искомую кривую. Делается это с помощью метода наименьших квадратов, когда минимизируется сумма квадратов отклонений реально наблюдаемых от их оценок (имеются в виду оценки с помощью прямой линии, претендующей на то, чтобы представлять искомую регрессионную зависимость):
( — объём выборки). Этот подход основан на том известном факте, что фигурирующая в приведённом выражении сумма принимает минимальное значение именно для того случая, когда .
Для решения задачи регрессионного анализа методом наименьших квадратов вводится понятие функции невязки:
Условие минимума функции невязки:
Полученная система является системой линейных уравнений с неизвестными .
Если представить свободные члены левой части уравнений матрицей
а коэффициенты при неизвестных в правой части — матрицей
то получаем матричное уравнение: , которое легко решается методом Гаусса. Полученная матрица будет матрицей, содержащей коэффициенты уравнения линии регрессии:
Для получения наилучших оценок необходимо выполнение предпосылок МНК (условий Гаусса — Маркова). В англоязычной литературе такие оценки называются BLUE (Best Linear Unbiased Estimators — «наилучшие линейные несмещённые оценки»). Большинство исследуемых зависимостей может быть представлено с помощью МНК нелинейными математическими функциями.
Интерпретация параметров регрессии
[править | править код]Параметры являются частными коэффициентами корреляции; интерпретируется как доля дисперсии Y, объяснённая , при закреплении влияния остальных предикторов, то есть измеряет индивидуальный вклад в объяснение Y. В случае коррелирующих предикторов возникает проблема неопределённости в оценках, которые становятся зависимыми от порядка включения предикторов в модель. В таких случаях необходимо применение методов анализа корреляционного и пошагового регрессионного анализа.
Говоря о нелинейных моделях регрессионного анализа, важно обращать внимание на то, идёт ли речь о нелинейности по независимым переменным (с формальной точки зрения легко сводящейся к линейной регрессии), или о нелинейности по оцениваемым параметрам (вызывающей серьёзные вычислительные трудности). При нелинейности первого вида с содержательной точки зрения важно выделять появление в модели членов вида , , свидетельствующее о наличии взаимодействий между признаками , и т. д. (см. Мультиколлинеарность).
См. также
[править | править код]- Корреляция
- Мультиколлинеарность
- Автокорреляция
- Перекрёстная проверка
- Линейная регрессия на корреляции
Литература
[править | править код]- Дрейпер Н., Смит Г. Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. — 3-е изд. — М.: «Диалектика», 2007. — 912 с. — ISBN 0-471-17082-8.
- Фёрстер Э., Рёнц Б. Методы корреляционного и регрессионного анализа = Methoden der Korrelation - und Regressiolynsanalyse. — М.: Финансы и статистика, 1981. — 302 с.
- Захаров С. И., Холмская А. Г. Повышение эффективности обработки сигналов вибрации и шума при испытаниях механизмов // Вестник машиностроения : журнал. — М.: Машиностроение, 2001. — № 10. — С. 31—32. — ISSN 0042-4633.
- Радченко С. Г. Устойчивые методы оценивания статистических моделей. — К.: ПП «Санспарель», 2005. — 504 с. — ISBN 966-96574-0-7, УДК: 519.237.5:515.126.2, ББК 22.172+22.152.
- Радченко С. Г. Методология регрессионного анализа. — К.: «Корнийчук», 2011. — 376 с. — ISBN 978-966-7599-72-0.