対称操作

ウィキペディアから無料の百科事典

結晶学における対称操作とは、格子点を不変にする操作である。 対称操作には次のものがある。

ただし、並進操作と回転操作には対称操作でないもの存在する。

対称操作

[編集]

並進操作

[編集]

並進操作は以下で表される。

ここでは整数、は基本単位格子を表すベクトル。

回転操作

[編集]

回転操作は、ある軸まわりに

だけ格子を回転した後、まったく同一の格子に重なるような操作をいう。 またこのときの軸をn回回転軸と呼ぶ。 5回、7回などの回転軸は並進操作と両立しないことに注意。

反転操作

[編集]

反転操作は、反転中心に関して次の座標変換をもたらす。

鏡映操作

[編集]

鏡映操作は、文字通り点Aを面m(鏡映面)について面対称な点A'に移動させる。

参考文献

[編集]
  • 今野 豊彦『物質の対称性と群論』共立出版、2001年。ISBN 978-4320034099