Специальная теория относительности

Из Википедии, бесплатной энциклопедии

Специа́льная тео́рия относи́тельности (СТО; также ча́стная тео́рия относи́тельности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света (в рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей). Фактически СТО описывает геометрию четырёхмерного пространства-времени и основана на плоском (то есть неискривлённом) пространстве Минковского. Обобщение СТО для сильных гравитационных полей называется общей теорией относительности.

Основным отличием СТО от классической механики является зависимость (наблюдаемых) пространственных и временных характеристик от скорости. Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, — релятивистскими скоростями.

Центральное место в специальной теории относительности занимают преобразования Лоренца, позволяющие преобразовывать пространственно-временные координаты событий при переходе от одной инерциальной системы отсчёта к другой, когда одна из них движется относительно другой с определенной скоростью.

Специальная теория относительности была создана Альбертом Эйнштейном в работе 1905 года «К электродинамике движущихся тел». Математический аппарат преобразований координат и времени между различными системами отсчёта (с целью сохранения уравнений электромагнитного поля) был ранее сформулирован французским математиком А. Пуанкаре (который и предложил их назвать «преобразованиями Лоренца»: сам Лоренц вывел до этого только приближённые формулы[К. 1]). А. Пуанкаре также первым показал, что эти преобразования можно геометрически представить как повороты в четырёхмерном пространстве-времени (опередив Г. Минковского), и показал, что преобразования Лоренца образуют группу (см. о роли Пуанкаре в создании теории относительности подробнее).

Непосредственно термин «теория относительности» был предложен М. Планком. В дальнейшем, после разработки А. Эйнштейном теории гравитации — общей теории относительности — к первоначальной теории начал применяться термин «специальная» или «частная» теория относительности (от нем. Spezielle Relativitätstheorie).

Создание СТО[править | править код]

Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики[1]. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие свойства электромагнитного поля и его взаимодействие с зарядами и токами. В электродинамике Максвелла скорость распространения электромагнитных волн в вакууме не зависит от скоростей движения как источника этих волн, так и наблюдателя, и равна скорости света. Таким образом, уравнения Максвелла оказались неинвариантными относительно преобразований Галилея, что противоречило классической механике.

Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, А. Эйнштейна и других учёных [2] (см. История теории относительности). Экспериментальной основой для создания СТО послужил опыт Майкельсона. Результаты оказались неожиданными для классической физики того времени: скорость света не зависит от направления (изотропность) и орбитального движения Земли вокруг Солнца. Попытка интерпретировать полученные данные вылилась в пересмотр классических представлений и привела к созданию специальной теории относительности.

При движении со скоростями, всё более приближающимися к скорости света, отклонение от законов классической динамики становится всё более существенным. Второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован в соответствии с принципами СТО. Также импульс и кинетическая энергия тела сложнее зависят от скорости, чем в нерелятивистском случае.

Специальная теория относительности получила многочисленные подтверждения на опыте и является верной теорией в своей области применимости[3] (см. Экспериментальные основания СТО). По меткому замечанию Л. Пэйджа, «в наш век электричества вращающийся якорь каждого генератора и каждого электромотора неустанно провозглашает справедливость теории относительности — нужно лишь уметь слушать»[4].

Основные понятия и постулаты СТО[править | править код]

Специальная теория относительности, как и любая другая физическая теория, может быть сформулирована на базе из основных понятий и постулатов (аксиом) и правил соответствия её физическим объектам.

Основные понятия[править | править код]

Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта.

Инерциальная система отсчёта (ИСО) — такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Постулируется, что ИСО существуют, и любая система отсчёта, движущаяся относительно данной инерциальной системы равномерно и прямолинейно, также является ИСО.

Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t. Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т. п.

Обычно рассматриваются две инерциальные системы S и S'. Время и координаты некоторого события, измеренные в системе S, обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные в системе S', как (t', x', y', z'). Удобно считать, что координатные оси систем параллельны друг другу, и система S' движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t', x', y', z') и (t, x, y, z), которые называются преобразованиями Лоренца.

Синхронизация времени[править | править код]

В СТО постулируется возможность определения единого времени в рамках данной инерциальной системы отсчёта процедурой синхронизации двух часов, находящихся в произвольных точках ИСО[5].

Пусть от первых часов в момент времени ко вторым посылается сигнал (не обязательно световой) с постоянной скоростью . Сразу по достижении вторых часов сигнал отправляется обратно с той же постоянной скоростью и достигает первых часов в момент времени . Часы считаются синхронизированными, если выполняется соотношение , где — показание вторых часов в момент прихода к ним сигнала от первых часов.

Предполагается, что такая процедура в данной инерциальной системе отсчёта может быть проведена для любых двух часов, так что справедливо свойство транзитивности: если часы A синхронизированы с часами B, а часы B синхронизированы с часами C, то часы A и C также окажутся синхронизированными.

В отличие от классической механики, единое время можно ввести только в рамках данной системы отсчёта. В СТО не предполагается, что время является общим для различных систем. В этом состоит основное отличие аксиоматики СТО от классической механики, в которой постулируется существование единого (абсолютного) времени для всех систем отсчёта.

Согласование единиц измерения[править | править код]

Чтобы измерения, выполненные в различных ИСО, можно было между собой сравнивать, необходимо провести согласование единиц измерения между системами отсчёта. Так, единицы длины могут быть согласованы при помощи сравнения эталонов длины в перпендикулярном направлении к относительному движению инерциальных систем отсчёта[6]. Например, это может быть кратчайшее расстояние между траекториями двух частиц, движущихся параллельно осям x и x' и имеющих различные, но постоянные координаты (y, z) и (y',z'). Для согласования единиц измерения времени можно использовать идентично устроенные часы, например, атомные.

Постулаты СТО[править | править код]

В первую очередь в СТО, как и в классической механике, предполагается, что пространство и время однородны, а пространство также изотропно[7]. Если быть более точным (современный подход), инерциальные системы отсчёта собственно и определяются как такие системы отсчёта, в которых пространство однородно и изотропно, а время однородно. По сути существование таких систем отсчёта постулируется.

Постулат 1 (принцип относительности Эйнштейна). Законы природы одинаковы во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга[8]. Это означает, что форма зависимости физических законов от пространственно-временных координат должна быть одинаковой во всех ИСО, то есть законы инвариантны относительно переходов между ИСО. Принцип относительности устанавливает равноправие всех ИСО.

Учитывая второй закон Ньютона (или уравнения Эйлера-Лагранжа в лагранжевой механике), можно утверждать, что если скорость некоторого тела в данной ИСО постоянна (ускорение равно нулю), то она должна быть постоянна и во всех остальных ИСО. Иногда это и принимают за определение инерциальных систем отсчёта.

Формально, принцип относительности Эйнштейна распространяет классический принцип относительности (Галилея) с механических на все физические явления. Однако, если учесть, что во времена Галилея физика заключалась собственно в механике, то и классический принцип тоже можно было считать распространяющимся на все физические явления. В том числе он должен распространяться и на электромагнитные явления, описываемые уравнениями Максвелла, которые выведены из эмпирически выявленных закономерностей. Однако, согласно последним, скорость распространения света является определённой величиной, не зависящей от скорости источника (по крайней мере в одной системе отсчёта). Из принципа относительности следует, что она не должна зависеть от скорости источника во всех ИСО в силу их равноправности. А значит, она должна быть постоянной во всех ИСО. В этом заключается суть второго постулата:

Постулат 2 (принцип постоянства скорости света). Скорость света в вакууме одинакова во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга[8].

Принцип постоянства скорости света противоречит классической механике, а конкретно — закону сложения скоростей. При выводе последнего используется только принцип относительности Галилея и неявное допущение одинаковости времени во всех ИСО. Таким образом, из справедливости второго постулата следует, что время должно быть относительным — неодинаковым в разных ИСО. Необходимым образом отсюда следует и то, что «расстояния» также должны быть относительны. В самом деле, если свет проходит расстояние между двумя точками за некоторое время, а в другой системе — за другое время и притом с той же скоростью, то отсюда следует, что и расстояние в этой системе должно отличаться.

Световые сигналы не требуются при обосновании СТО. Хотя неинвариантность уравнений Максвелла относительно преобразований Галилея привела к построению СТО, последняя имеет более общий характер и применима ко всем видам взаимодействий и физических процессов. Фундаментальная константа , возникающая в преобразованиях Лоренца, имеет смысл предельной скорости движения материальных тел. Численно она совпадает со скоростью света, однако этот факт, согласно современной квантовой теории поля (уравнения которой изначально строятся как релятивистски инвариантные) связан с безмассовостью электромагнитного поля (фотона). Даже если бы фотон имел отличную от нуля массу, преобразования Лоренца от этого бы не изменились. Поэтому имеет смысл различать фундаментальную константу — скорость и скорость света [9]. Первая константа отражает общие свойства пространства и времени, тогда как вторая связана со свойствами конкретного взаимодействия.

Также используется постулат причинности: любое событие может оказывать влияние только на события, происходящие позже него, и не может оказывать влияние на события, произошедшие раньше него[10][11][12]. Из постулата причинности и независимости скорости света от выбора системы отсчёта следует, что скорость любого сигнала не может превышать скорость света[13][14][12].

Альтернативные аксиоматики[править | править код]

После построения Эйнштейном СТО на основе вышеуказанных постулатов многие исследователи пытались отказаться от второго постулата вообще. Спустя 5 лет после известной статьи Эйнштейна 1905 года, благодаря работам Игнатовского[15], Ф.Франка и Г.Роте[16] (см. исторический очерк) стал известен способ получения общего вида (с точностью до неопределённой константы) преобразований Лоренца без использования второго постулата. При «правильном» знаке неопределённого параметра эти преобразования совпадают с преобразованиями Лоренца. Из этого следует наличие максимальной скорости, одинаковой во всех ИСО. Тем не менее, знак этой константы из предложенных аксиом никак не следует. Предлагается оценивать значение параметра экспериментально. Чтобы измерить этот параметр, а значит, и фундаментальную скорость , нет необходимости проводить электродинамические эксперименты. Можно, например, на основе измерений скорости одного и того же объекта в разных ИСО воспользоваться законом сложения скоростей с неопределённым параметром[17]. Экспериментальное «вычисление» знака неопределённой константы фактически эквивалентно предположению о наличии максимальной скорости, то есть по существу второму постулату.

Тем не менее, попытки аксиоматизации, в том числе без второго постулата, предпринимались позднее и другими исследователями. Существуют также аксиоматики, которые не используют принцип относительности — а только принцип постоянства скорости света. Более подробно с ними можно ознакомиться в статье А. К. Гуца[18].

Преобразования Лоренца[править | править код]

Пусть координатные оси двух инерциальных систем отсчёта и параллельны друг другу,  — время и координаты некоторого события, наблюдаемого в системе отсчёта , а  — время и координаты того же события в системе .

Общий вид преобразований Лоренца в векторном виде[19], когда скорость систем отсчёта имеет произвольное направление:

где  — фактор Лоренца, и  — радиус-векторы события в системе и .

Если сориентировать координатные оси по направлению относительного движения инерциальных систем (то есть в общие формулы подставить ) и выбрать это направление в качестве оси (то есть так, чтобы система двигалась равномерно и прямолинейно со скоростью относительно вдоль оси ), то преобразования Лоренца примут следующий вид:

где  — скорость света. При скоростях много меньше скорости света () преобразования Лоренца переходят в преобразования Галилея:

Подобный предельный переход является отражением принципа соответствия, согласно которому более общая теория (СТО) имеет своим предельным случаем менее общую теорию (в данном случае — классическую механику).

Вывод преобразований Лоренца[править | править код]

Существует множество способов вывода преобразований Лоренца. Рассмотрим один из вариантов.

Пусть начало координат системы (в силу однородности пространства это может быть любая покоящаяся в этой системе точка) движется относительно системы со скоростью . Соответственно, начало координат (покоящаяся точка) системы движется в со скоростью . В целях упрощения изложения будем предполагать совпадение начал отсчёта обеих ИСО (, когда ) и одинаковой ориентированности координатных осей. Пусть скорость системы () направлена по оси (против оси ).

При относительном движении систем вдоль оси x можно считать, что . Будем исследовать преобразования для одномерного пространства и рассматривать векторы двумерного пространства — времени .

Линейность преобразований[править | править код]

В силу однородности пространства и времени, изотропности пространства и принципа относительности преобразования от одной ИСО к другой должны быть линейными[20][21]. Линейность преобразований можно также вывести, предполагая, что если два объекта имеют одинаковые скорости относительно одной ИСО, то их скорости будут равны и в любой другой ИСО[22], (при этом необходимо использовать также слабые предположения о дифференцируемости и взаимной однозначности функций преобразования). Если использовать только «определение» ИСО: если некоторое тело имеет постоянную скорость относительно одной инерциальной системы отсчёта, то его скорость будет постоянна и относительно любой другой ИСО, то можно показать только, что преобразования между двумя ИСО должны быть дробно-линейными функциями координат и времени с одинаковым знаменателем[16][23].

Таким образом, если  — пространственно-временной вектор в системе , то будем предполагать, что , где— матрица искомого линейного преобразования, зависящая только от относительной скорости рассматриваемых ИСО, то есть . Тогда линейное преобразование и закон сложения скоростей имеют следующий общий вид (структуру):

Уже на этой стадии можно получить окончательный вид функции , используя второй постулат.

Другой способ состоит в рассмотрении свойств матрицы преобразования, которые следуют из принципа относительности и изотропности пространства. Эти свойства позволяют получить окончательный вид обеих функций и [22][24]. Далее приводится этот способ.

Свойства матрицы преобразования[править | править код]

Очевидно, если , то . Поскольку преобразования должны быть одинаковыми для всех ИСО (принцип относительности), то , так как если система движется относительно со скоростью , то это означает, что система движется относительно со скоростью . Таким образом

Подставив в это соотношение общий вид искомой матрицы , получим

где  — нечётная функция.

В силу изотропности пространства, смена координатных осей в противоположную сторону не должна влиять на вид зависимости между координатами в разных системах.

Выбрав произвольный вектор , в другой системе отсчёта получим . Поменяв координатную ось на противоположную в обеих системах, получим . В силу изотропности пространства, изменение направления не изменяет зависимость между координатами. Поэтому  — чётная функция. Следовательно, . Поскольку при преобразование должно быть тождественным, то . В силу чётности вещественная функция неотрицательна в окрестности точки (границы окрестности определяются из равенства ). Следовательно, при взятии квадратного корня необходимо использовать только положительный знак: .

Тем самым остаётся только уточнить функцию . Это можно сделать сразу, воспользовавшись вторым постулатом. Однако из принципа относительности следует, что эта функция должна иметь вид , где  — параметр, не зависящий от .

Следовательно, матрица преобразования и закон сложения скоростей имеют следующий вид (с точностью до неопределённого параметра ):

и закон сложения скоростей

Численное значение параметра и её знак невозможно вывести из вышеуказанных предположений[25]. Для этого необходимо либо дополнительное предположение (из которого будет следовать знак ), либо обращение к эксперименту (последнее необходимо в любом случае для установления конкретного значения ). Если , то получим классические преобразования Галилея; если , то получаем искомые преобразования Лоренца (введя обозначение ). Из дальнейшего будет ясно, что в этом случае константа имеет смысл максимальной скорости движения любого объекта.

Использование второго постулата[править | править код]

Из второго постулата и закона сложения скоростей следует, что и если , то .

Таким образом, окончательно получаем матрицу преобразования координатно-временного вектора и формулу преобразования скорости (закон сложения скоростей) при переходе от системы отсчёта к системе :

,

Для получения обратных преобразований (от к ) достаточно вместо скорости подставить и поменять местами и .

Интервал[править | править код]

Интервалом между произвольными событиями называется квадратный корень следующей величины:

где  — являются разностями времён и координат двух событий.

Непосредственной подстановкой преобразований Лоренца можно убедиться, что интервал оказывается одинаковым во всех ИСО. Этот факт, однако, можно показать и без использования полученных преобразований Лоренца, а используя только постулаты СТО[26] (включая однородность и изотропность пространства и однородность времени).

Если , то говорят, что события разделены времениподобным интервалом; если , то пространственноподобным интервалом. Наконец, если то такие интервалы называются светоподобными.

Инвариантность интервала означает, что он имеет одинаковое значение в любых инерциальных системах отсчёта:

Про события, интервал между которыми времениподобен или светоподобен, всегда можно сказать, что одно событие произошло до другого (то есть эти события можно упорядочить во времени, и их последовательность будет одинаковой в любой ИСО). Эти события могут быть связаны причинно-следственными связями.

В событиях, интервал между которыми пространственноподобен, нет определённой последовательности: если в одной системе отсчёта два события произошли в моменты времени то можно найти другую инерциальную систему отсчёта (двигающуюся относительно первой с определённой скоростью ), в которой события произошли в моменты времени в другом порядке: Такие события не могут быть связаны причинно-следственными связями.

Светоподобный интервал соответствует событиям, которые могут быть связаны сигналом, распространяющимся со скоростью света. Уравнение для светоподобного интервала записанное в виде задаёт конус, называемый световым конусом данного события; на световом конусе находятся все точки в прошлом и будущем, которые можно связать световым сигналом с данным событием.

Перечисленные свойства можно вывести из преобразований Лоренца, если записать их в виде:

Знак интервала, вообще говоря, можно выбрать произвольно. В первоначальной версии интервал записывался с обратным знаком (то есть пространственные координаты со знаком «+», а временная — «−»). В современной литературе чаще используют вышеприведённую формулу.

Сами преобразования Лоренца можно получить из их линейности и требования инвариантности интервала.

Геометрический подход[править | править код]

Четырёхмерное пространство-время[править | править код]

Световой конус

По своей форме интервал (особенно в первоначальной записи) напоминает расстояние в евклидовом пространстве, однако он имеет различный знак у пространственных и временных составляющих события. Следуя Минковскому и более ранней работе Пуанкаре, можно постулировать существование единого метрического четырёхмерного пространства-времени с 4-координатами . В простейшем случае плоского пространства метрика, определяющая расстояние между двумя бесконечно близкими точками, может быть евклидовой или псевдоевклидовой. Последний случай соответствует специальной теории относительности. Говорят, что интервал задаёт расстояние в псевдоевклидовом четырёхмерном пространстве-времени. Его также называют пространством-временем Минковского.

Наиболее «простой» способ понимания и вывода преобразований Лоренца при таком подходе может быть получен, если записать интервал (с обратным знаком), используя «мнимую» координату времени :

Тогда интервал выглядит как обычное евклидово расстояние между точками в четырёхмерном пространстве. Как было показано, интервал должен сохраняться при переходе между ИСО, следовательно, это могут быть либо параллельные переносы и инверсии (что не интересно), либо повороты в этом пространстве. Преобразования Лоренца играют роль поворотов в таком пространстве. Вращения базиса в четырёхмерном пространстве-времени, смешивающие временную и пространственные координаты 4-векторов, выглядят как переход в движущуюся систему отсчёта и похожи на вращения в обычном трёхмерном пространстве. При этом естественно изменяются проекции четырёхмерных интервалов между определёнными событиями на временную и пространственные оси системы отсчёта, что и порождает релятивистские эффекты изменения временных и пространственных интервалов. Именно инвариантная структура этого пространства, задаваемая постулатами СТО, не меняется при переходе от одной инерциальной системы отсчёта к другой. Используя только две пространственные координаты (x, y), четырёхмерное пространство можно изобразить в координатах (t, x, y). События, связанные с событием начала координат (t=0, x=y=0) световым сигналом (светоподобный интервал), лежат на так называемом световом конусе (см. рисунок справа).

В первоначальной версии Минковского (с мнимым временем) формулы преобразований Лоренца выводятся довольно просто — они следуют из известных формул поворотов в евклидовом пространстве.

Однако современный подход заключается во введении четырёхмерного пространства-времени (с вещественной осью времени ) с псевдометрикой. В таком пространстве формулы поворотов имеют аналогичный вид, однако вместо тригонометрических функций нужно использовать гиперболические.

Геометрический подход Минковского и Пуанкаре был развит в 1914 году А. Роббом, который положил в основу аксиоматического построения СТО понятие о следовании событий. Данный подход был в дальнейшем развит А. Д. Александровым в работах 50-х—70-х годов. Базовая аксиоматика предполагает[18], что пространство-время является, во-первых, четырёхмерным связным односвязным локально-компактным хаусдорфовым топологическим пространством с определённой на нём группой параллельных переносов (формально — транзитивной коммутативной группой гомеоморфизмов пространства на себя). Это означает, что оно является аффинным пространством с этой группой переносов. Во-вторых — и это самый принципиальный момент — каждой точке пространства-времени сопоставлены подмножества (содержащие, кроме этой точки, также и другие) так называемые «области воздействия» (или следования, последующих событий) точки — такие, что для любой другой точки области воздействия её область воздействия входит в область воздействия данной точки. Данное предположение вводит отношение частичного порядка в пространстве времени — отношение следования или причинности. Данное отношение позволяет ввести понятие ограниченного множества (в смысле этого отношения порядка). Формально-математическим аналогом второго постулата СТО (ограниченности скорости передачи воздействия) в данном случае будет предположение об ограниченности пересечения «последующего» множества данной точки и «предшествующего» множества любой «последующей» точки. Эти предположения являются базовыми. Тем не менее, этих предположений оказывается недостаточно для получения преобразований Лоренца. Приходится делать дополнительные предположения о существовании группы взаимно-однозначных отображений, обладающих определёнными свойствами по отношению к «областям воздействия». Вместе с этими дополнительными аксиомами указанная группа отображений фактически является группой Лоренца и тем самым могут быть введены декартовы координаты, псевдометрика и собственно явный вид преобразований Лоренца.

Геометрическая интерпретация пространства-времени позволяет формулировать СТО в ковариантной форме (см. ниже) на основе тензорного анализа. Именно геометрическая интерпретация является основой для обобщения теории относительности (общая теория относительности).

Пространство скоростей[править | править код]

Возможен ещё один подход, в котором постулируется геометрическая структура пространства скоростей. Каждая точка такого пространства соответствует некоторой инерциальной системе отсчёта, а расстояние между двумя точками — модулю относительной скорости между ИСО. В силу принципа относительности все точки такого пространства должны быть равноправными, а, следовательно, пространство скоростей является однородным и изотропным. Если его свойства задаются римановой геометрией, то существует три и только три возможности: плоское пространство, пространство постоянной положительной и отрицательной кривизны. Первый случай соответствует классическому правилу сложения скоростей. Пространство постоянной отрицательной кривизны (пространство Лобачевского) соответствует релятивистскому правилу сложения скоростей и специальной теории относительности.

Групповой подход[править | править код]

Преобразования от одной системы отсчёта к другой можно построить на аксиоматической основе, без уточнения структуры пространства-времени[18]. Для этого вводят понятие множества «событий» . Инерциальные системы отсчёта представляют собой некоторые отображения (взаимно-однозначные) «событий» в  — в четырёхмерное арифметическое пространство. Первые три числа — пространственные компоненты, последняя — время. Среди подмножеств выделяются инерциальные движения , которые определяются как подмножества, которые отображаются (при отображении ) в векторы, пространственные компоненты которого связаны с временной следующим образом , где коэффициенты — константы. В частности, если все , то имеем покоящееся «инерциальное движение» (покоящееся тело). Собственно сами преобразования от системы к представляют собой композицию .

Далее необходимо формализовать понятие движения одной ИСО относительно другой. Говорят, что покоится относительно S, если «покоящееся тело» в также покоится и в . В противном случае говорят, что движется относительно . В первую очередь предполагается, что существуют ИСО, движущиеся относительно друг друга (аксиома 1).

Далее определим линейное преобразование в , пространственная часть матрицы которой представляет собой ортогональное преобразование, а из временной (четвёртая строка и четвёртый столбец) диагональный элемент равен 1, остальные нулю. Назовём это преобразование «пространственным поворотом» (чем он по сути и является). Предполагается (аксиома 2а), что для всякой системы отсчёта существует система , преобразование к которой представляет собой некоторый пространственный поворот , в частности (аксиома 2б), если покоится относительно некоторой системы , то соответствующее преобразование является некоторым пространственным поворотом. Кроме этого, предполагается (аксиома 3), что для всякого инерциального движения существует другое инерциальное движение , которое отображается в данной системе отсчёта одинаково с точностью до некоторого пространственного поворота.

Наконец ещё одно предположение (аксиома 4) заключается в том, что для всякого преобразования между некоторыми инерциальными системами и для произвольной системы найдётся такая система отсчёта , что преобразование от к тождественно преобразованию .

Оказывается, такая система аксиом приводит к тому что группа преобразований может быть либо галилеевой, либо имеет вещественный параметр , что совпадает с неоднородной группой Лоренца.

Следствия преобразований Лоренца[править | править код]

Сложение скоростей[править | править код]

Непосредственным следствием преобразований Лоренца является релятивистское правило сложения скоростей. Если некоторый объект имеет компоненты скорости относительно системы и  — относительно , то они связаны равенствами:

В этих соотношениях относительная скорость движения системы отсчёта направлена вдоль оси .

Если объект движется со скоростью света вдоль оси x относительно системы , то такая же скорость у него будет и относительно : . Это означает, что скорость является инвариантной (одинаковой) во всех ИСО.

Релятивистское сложение скоростей, как и преобразования Лоренца, при малых скоростях () переходит в классический закон сложения скоростей.

Замедление времени[править | править код]

Если часы неподвижны в системе , то для двух последовательных событий, фиксируемых в некоторой точке системы , имеет место . Из преобразования Лоренца следует, что такие часы перемещаются относительно системы по закону . Поэтому из преобразования для интервалов времени, измеряемых наблюдателями в системах и , следует соотношение

В этой формуле интервал времени (интервал собственного времени) измеряется часами, покоящимися в системе , которая движется относительно системы . Он сравнивается с интервалом нескольких различных, синхронно идущих часов, расположенных в системе . Поскольку при , то это означает, что часы в системе отсчёта , движущиеся относительно системы со скоростью , идут медленнее часов в . С этим эффектом связан так называемый парадокс близнецов.

Если часы движутся с переменной скоростью относительно инерциальной системы отсчёта, то время, измеряемое ими в сопутствующей системе отсчёта, где часы покоятся (собственное время), может быть вычислено по формуле:

где суммируются интервалы времени в локально инерциальных системах отсчёта.

Относительность одновременности[править | править код]

Если два разнесённых в пространстве события (например, вспышки света) происходят одновременно в движущейся со скоростью системе отсчёта , то они будут неодновременными относительно «неподвижной» системы . При из преобразований Лоренца следует

Если , то и . Это означает что, с точки зрения неподвижного наблюдателя в системе , левое событие в точке происходит раньше правого в точке . Относительность одновременности приводит к невозможности синхронизации часов в различных инерциальных системах отсчёта во всём пространстве.

Пусть в каждой из систем отсчёта и вдоль осей