Тета-функция

Из Википедии, бесплатной энциклопедии

Оригинальная тета-функция Якоби с и номом[en] }}. Соглашения:

Тета-функции — это специальные функции от нескольких комплексных переменных. Они играют важную роль во многих областях, включая теории абелевых многообразий, пространства модулей и квадратичных форм. Они применяются также в теории солитонов. После обобщения к алгебре Грассмана функции появляются также в квантовой теории поля[1].

Наиболее распространённый вид тета-функций — это функции, встречающиеся в теории эллиптических функций. По отношению к одной из комплексных переменных (обычно обозначаемой z) тета-функция имеет свойство, выражающееся в сложении периодов ассоциированных эллиптических функций, что делает их квазипериодическими[en]. В абстрактной теории это получается из условия линейного расслоения[en] понижения[en].

Тета-функция Якоби[править | править код]

Тета-функция 1 Якоби
Тета-функция 2 Якоби
Тета-функция 3 Якоби
Тета-функция 4 Якоби

Имеется несколько связанных функций, которые называются тета-функциями Якоби, и много различных и несовместимых систем их обозначения. Одна тета-функция Якоби (названа именем Карла Густава Якоби), это функция, определённая от двух комплексных переменных z и , где z может быть любым комплексным числом, а ограничена верхней половиной плоскости, что означает, что число имеет положительную мнимую часть. Функция задаётся формулой

где и . Функция является формой Якоби[en]. Если фиксировать , функция становится рядом Фурье для периодической целой функции от z с периодом 1. В этом случае тета-функция удовлетворяет тождеству

Функция ведёт себя очень регулярно с учётом квазипериода и удовлетворяет функциональному уравнению

где a и b — целые числа.

Тета-функция с различными номами[en] . Чёрная точка на правом рисунке показывает, как меняется q при изменении
Тета-функция с различными номами[en] . Чёрная точка на правом рисунке показывает, как меняется q при изменении

Вспомогательные функции[править | править код]

Тета-функция Якоби, определённая выше, иногда рассматривается вместе с тремя дополнительными тета-функциями и в этом случае записывается с дополнительным индексом 0:

Дополнительные (полупериодичные) функции определяются формулами

Этим обозначениям следовали Риман и Мамфорд. Первоначальная формулировка Якоби была в терминах нома[en] , а не . В обозначениях Якоби θ-функции записываются в виде:

Приведённые выше определения тета-функции Якоби далеко не единственные. См. статью Тета-функции Якоби (вариации обозначений)[en] с дальнейшим обсуждением.

Если мы положим в тета-функциях выше, мы получим четыре функции, зависящие только от и определённые на верхней полуплоскости (которые иногда называются тета-константами.) Они могут быть использованы для определения различных модулярных форм и для параметризации некоторых кривых.

Тождества основная[править | править код]

Так называемые функции «тета-нульверт» (Theta-Nullwert) имеют следующее представление суммы и следующее представление произведения:

Тета-функция удовлетворяет следующему основному соотношению с «номеном q»:

Следующие две формулы определяют полный эллиптический интеграл первого типа и согласуются друг с другом:

Тождества Якоби[править | править код]

В частности Тождества Якоби определяется следующей формулой:

Эта формула представляет собой кривой Ферма четвертой степени.

Тождества Якоби также возникает как комбинация трех квадратичных соотношений:

Объединение этих трех формул дает следующую формулу:

Тождества Якоби описывают, как тета-функции преобразуются модулярной группой, которая порождается отображениями и . Тождества для первого преобразования найти легко, поскольку добавление единицы в показателе к имеет тот же эффект, что и добавление к z ( mod 2). Во втором случае положим

Тогда

Тета-функции в терминах нома[править | править код]

Вместо выражения тета-функций в терминах z и мы можем выразить их в терминах аргумента w и нома[en] q, где , а . В этом случае функции превращаются в

Мы видим, что тета-функции можно определить в терминах w и q без прямой ссылки на экспоненциальную функцию. Формулы могут быть использованы, поэтому, для определения тета-функций над другими полями, где экспоненциальная функция может быть не везде определена, такими как поле p-адических чисел.

Представления произведений[править | править код]

Тройное произведение Якоби (специальный случай тождеств Макдональда[en]) говорит нам, что для комплексных чисел w и q с и мы имеем

Это можно доказать элементарными средствами, как, например, в книге Харди и Райта An Introduction to the Theory of Numbers[en].

Если мы выразим тета-функцию в терминах томов и , то

Мы поэтому получаем формулу произведения для тета-функции вида

В терминах w и q:

где является q-символом Похгаммера, а является q-тета-функцией[en]. Если раскрыть скобки, тройное произведение Якоби получит вид

что можно также переписать в виде

Эта формула верна для общего случая, но представляет особый интерес при вещественных z. Аналогичные формулы произведений для дополнительных тета-функций

Интегральные представления[править | править код]

Тета-функции Якоби имеют следующие интегральные представления:

Явные значения[править | править код]

Лемнискатические значения[править | править код]

См. статью Джинхи Йи (2004)[2].

В следующей таблице приведены лемнискатические значения функций ϑ₁₀(x) и ϑ₀₀(x):

x ϑ₁₀(x) ϑ₀₀(x)

Дополнительные значения для ϑ₀₀(x):

И с греческой буквой показано Золотое сечение. Символом обозначена постоянная Гаусса, которая представляет собой отношение лемнискатической константы к числу π. Только что показанные значения были исследованы южнокорейским математиком Джинхи Йи из Пусанского национального университета (부산 대학교). Их результаты впоследствии были опубликованы в Журнале математического анализа и приложений. Кроме того, применяются следующие значения:

Эти два значения можно определить непосредственно с помощью формулы суммы Пуассона:

Эквиангармонические значения[править | править код]

Функция ϑ₀₀ имеет следующие эквиангармонические значения функции:

Некоторые эквиангармонические значения тета-функции были исследованы, в частности, математиками Брюсом Карлом Берндтом и Орсом Ребаком.

Значения тета над факториалами восьмых[править | править код]

Значения функции вида ϑ₀₁:

Некоторые тождества с рядами[править | править код]

Следующие два тождества для рядов доказал Иштван Мезо[3]:

Эти отношения выполняются для всех 0 < q < 1. Фиксируя значения q, мы получим следующие свободные от параметров суммы

Нули тета-функций Якоби[править | править код]

Все нули тета-функций Якоби являются простыми нулями и задаются следующим образом:

,

где m, n являются произвольными целыми.

Связь с дзета-функцией Римана[править | править код]

Соотношение

использовал Риман для доказательства функционального уравнения для дзета-функции Римана посредством преобразования Меллина

и можно показать, что преобразование инвариантно относительно замены s на 1 − s. Cоответствующий интеграл для z ≠ 0 дан в статье о дзета-функции Гурвица.

Связь с эллиптической функцией Вейерштрасса[править | править код]

Тета-функции использовал Якоби для построения (в виде, приспособленном для упрощения вычислений) его эллиптических функций как частные вышеприведённых четырёх тета-функций, и он мог их использовать также для построения эллиптических функций Вейерштрасса, поскольку

,

где вторая производная берётся по z, а константа c определена так, что ряд Лорана функции ℘(z) в точке z = 0 имеет нулевой постоянный член.

Связь с q-гамма функцией[править | править код]

Четвёртая тета-функция – а тогда и остальные – неразрывно связана с q-гамма-функцией Джексона[en] соотношением[4].

Связь с эта-функцией Дедекинда[править | править код]

Пусть эта-функция Дедекинда[en], а аргумент тета-функции представлен как ном[en] . Тогда

и

См. также статью о модулярных функциях Вебера.

Эллиптический модуль[править | править код]

J-инвариант равен

,

а дополнительный эллиптический модуль равен

Решение теплового уравнения[править | править код]

Тета-функция Якоби является фундаментальным решением одномерного уравнения теплопроводности с пространственными периодическими граничными условиями[5]. Принимая вещественным, а с вещественным и положительным t, мы можем записать

,

что решает уравнение теплопроводности

Это решение в виде тета-функции является 1-периодическим по x, и при оно стремится к периодической дельта-функции или гребню Дирака в смысле распределений

.

Общие решения для задачи с пространственными периодическими начальными значениями для уравнения теплопроводности могут быть получены путём свёртки начальных данных в с тета-функцией.

Связь с группой Гейзенберга[править | править код]

Тета-функция Якоби является инвариантом при действии дискретной подгруппы группы Гейзенберга. Эта инвариантность представлена в статье о тета-представлении[en] группы Гейзенберга.

Обобщения[править | править код]

Если F является квадратичной формой от n переменных, то тета-функция, связанная с F, равна

с суммой по решётке целых чисел n. Эта тета-функция является модулярной формой с весом (на надлежащим образом определённой подгруппе) модулярной группы. В разложении в ряд Фурье

числа называются числами представления формы.

Тета-функция Рамануджана[править | править код]

Риманова тета-функция[править | править код]

Пусть

является множеством симметричных квадратных матриц, мнимая часть которых положительно определена. n называется верхним полупространством Зигеля[en] и является многомерным аналогом верхней полуплоскости. n-Мерным аналогом модулярной группы является симплектическая группа Sp(2n,). Для . Роль n-мерного аналога конгруэнтных подгрупп играет

Тогда, если дано , тета-функция Римана определяется как

Здесь является n-мерным комплексным вектором, а верхний индекс T означает транспонирование. Тета-функция Якоби является тогда частным случаем с и , где является верхней полуплоскостью.

Тета-функция Римана сходится абсолютно и равномерно на компактных подмножествах .

Функциональное уравнение функции

которое выполняется для всех векторов и для всех }} и .

Ряд Пуанкаре[править | править код]

Ряд Пуанкаре[en] обобщает тета-ряд на автоморфные формы применительно к произвольным фуксовым группам.

Уравнения пятой степени[править | править код]

Решение формы Бринга-Джеррарда[править | править код]

Согласно Теореме Абеля-Руффини общее уравнение пятой степени не может быть решено в элементарной радикальной форме. Но общее решение вполне возможно с помощью эллиптических функций. С тета-функцией общий случай Уравнения пятой степени также может быть решен как функция эллиптического «номена q» из эллиптического модуля, который всегда «элементарен» в зависимости от коэффициентов. Для следующего уравнения пятой степени в форме Бринга-Джеррарда общее решение может быть представлено в упрощенной форме тета-функцией ϑ₀₀:

Для всех реальных значений имеет показанную сумму функции пятой степени и идентичную функцию отображения для в зависимости от точно реальное решение. И это фактическое решение может для всех действительных значений может быть вызвано точно по следующему алгоритму:

Método de resolución de las ecuaciones quínticas a través de la función theta
Уравнение Бринга – Джеррарда:

Значение эллиптической функции «Номен q»:

Актуальное решение для :

Три примера расчета[править | править код]

Ниже в качестве примеров рассматриваются три уравнения, которые можно решить с помощью тета-функции Якоби, но вообще нельзя решить с помощью элементарных корневых выражений:

Тот же образец процедуры применяется в следующем уравнении: