Этан

Из Википедии, бесплатной энциклопедии

Этан
Изображение химической структуры Изображение молекулярной модели
Изображение молекулярной модели
Общие
Систематическое
наименование
Этан
Хим. формула C2H6
Рац. формула H3C—CH3
Физические свойства
Состояние Газ
Молярная масса 30,07 г/моль
Плотность 1,2601 кг/м3 в стандартных условиях по ГОСТ 2939—63; при н. у. (0С) 0,001342 г/см³
Энергия ионизации 11,52 эВ[2]
Термические свойства
Температура
 • плавления −182,8 °C
 • кипения −88,6 °C
 • вспышки 152 °C
 • воспламенения 152 °C
 • самовоспламенения 472 °C
Мол. теплоёмк. 52,65 Дж/(моль·К)
Энтальпия
 • образования -84,67 кДж/моль
Давление пара 2,379 МПа (0°С)
Химические свойства
Константа диссоциации кислоты 42 (вода, 20°С)
Структура
Гибридизация sp3-гибридизация
Дипольный момент 0 Кл·м[2]
Классификация
Рег. номер CAS 74-84-0
PubChem
Рег. номер EINECS 200-814-8
SMILES
InChI
RTECS KH3800000
ChEBI 42266
Номер ООН 1035
ChemSpider
Безопасность
Токсичность Малотоксичен
Краткие характер. опасности (H)
H220, H280[1]
Меры предостор. (P)
P210, P377, P381, P410+P403
Сигнальное слово Опасно
Пиктограммы СГС Пиктограмма «Пламя» системы СГСПиктограмма «Газовый баллон» системы СГС
NFPA 704
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

Эта́н (от лат. ethanum, химическая формула — C2H6 или H3C—CH3) — органическое соединение, относящееся к классу предельных углеводородов — алканов.

При стандартных условиях этан — это газ без цвета и запаха.

Строение[править | править код]

Параметры молекулы этана
Конформации этана

Молекула этана имеет тетраэдрическое строение: атомы углерода являются sp3-гибридными. Связь C-C образована перекрыванием sp3-гибридных орбиталей, а связь C-H — перекрыванием sp3-гибридной орбитали углерода и s-орбитали водорода. Длина связи C-C равна 1,54 Å, а длина связи C-H равна 1,095 Å[3].

Поскольку С-С-связь в этане одинарная, вокруг неё возможно свободное вращение атомов водорода метильных групп. При вращении возникают различные пространственные формы молекулы этана, которые называются конформациями. Конформации принято изображать в виде перспективного изображения (такие изображения иногда называют «лесопильными козлами») либо в виде проекций Ньюмена[3].

Число конформаций для этана бесконечно для всевозможных углов скручивания, однако обычно принято рассматривать две крайние конформации:

  • заслонённую, в которой атомы водорода максимально сближены в пространстве;
  • и заторможенную, в которой атомы водорода максимально удалены[3].
Энергия молекулы этана в зависимости от угла конформации

Заслонённая конформация имеет наибольшую энергию из всех конформаций, а заторможенная — наименьшую, то есть является наиболее энергетически выгодной и, следовательно, более устойчивой. Разница энергии между этими конформациями равна 2,9 ккал/моль (~12 кДж/моль). Считается, что это число отражает торсионное напряжение в менее выгодной заслонённой конформации. Если разделить эту энергию на три взаимодействия между парами атомов водорода, то энергия торсионного взаимодействия двух атомов водорода составит примерно 1 ккал/моль[3].

По значению 2,9 ккал/моль из уравнения Гиббса можно вычислить константу равновесия между двумя конформациями этана. При температуре 25 °С значительно преобладает заторможенная конформация: 99 % молекул этана находятся в этой конформации и лишь 1 % — в заслонённой[3].

Энергии крайних и промежуточных конформаций принято представлять в виде циклических графиков, где по оси абсцисс отложен торсионный угол, а по оси ординат — энергия.

Физические свойства[править | править код]

Этан при н. у. — бесцветный газ, без запаха и вкуса. Молярная масса 30,07. Температура плавления −183,23 °C, температура кипения −88,63 °C. Плотность ρгаз. 0,001342 г/см3 или 1,342 кг/м3 (при нормальных условиях), ρжидк. 561 кг/м3 (при температуре −100 °C). Давление паров при 0 °C 2,379 МПа. Растворимость в воде 4,7 мл в 100 мл (при 20 °C), в этаноле 46 мл в 100 мл (при 0 °C), хорошо растворяется в углеводородах. Точка вспышки этана −187,8 °C, температура самовоспламенения 595 °C. Этан образует с воздухом взрывоопасные смеси при содержании 5—15 об. % (при 20 °C). Октановое число 120,3[4][5][6].

Химические свойства[править | править код]

Этан вступает в типичные реакции алканов, прежде всего реакции замещения, проходящие по свободнорадикальному механизму. Среди основных химических свойств этана можно выделить:

1. Термическое дегидрирование при 550—650 °C с образованием этилена:
Дальнейшее дегидрирование выше 800 °C, приводящее к ацетилену (в этой реакции также получаются бензол и сажа);
2. Хлорирование при 300—450 °C с образованием этилхлорида:
3. Нитрование в газовой фазе с образованием смеси нитроэтана и нитрометана (3:1)[5]:
4. Галогенирование этана происходит по свободнорадикальному механизму. Например реакция с элементарным хлором:
,
.

Получение[править | править код]

В промышленности[править | править код]

В промышленности получают из нефтяных и природных газов, где он составляет до 10 % по объёму. Концентрация этана в ископаемых углеводородах существенно зависит от месторождения. В России содержание этана в нефтяных газах очень низкое. В США и Канаде (где его содержание в нефтяных и природных газах высоко) служит основным сырьём для получения этилена[5].

Также этан получают при гидрокрекинге углеводородов и ожижении углей[7].

В лабораторных условиях[править | править код]

В 1848 году Кольбе и Франкленд впервые синтетически получили этан, обработав пропионитрил металлическим калием. В 1849 году они получили этот газ электролизом ацетата калия и действием цинка и воды на иодэтан[8].

В лабораторных условиях, этан получают следующими способами:

1. Взаимодействием металлического натрия и иодметана (реакция Вюрца):
2. Электролизом раствора ацетата натрия:
3. Взаимодействием пропионата натрия с щёлочью:
4. Взаимодействием этилбромида с металлическим магнием, и последующим гидролизом образовавшегося реактива Гриньяра:
5. Гидрированием этилена (катализатор — палладий (Pd)) или ацетилена (в присутствии никеля Ренея)[5]:

Применение[править | править код]

Основное использование этана в промышленности — получение этилена методом парового крекинга. Именно из этилена далее получают важные промышленные продукты, однако в целях экономии разрабатываются методы превращения в них самого этана. Однако ни один из проектов пока не прошёл пилотную стадию. Проблемы в этой области связаны с низкой селективностью реакций. Одним из перспективных направлений является синтез винилхлорида напрямую из этана. Также применяется превращение этана в уксусную кислоту. Термическим хлорированием этана в различных условиях получают хлорэтан, 1,1-дихлорэтан и 1,1,1-трихлорэтан[7].

Физиологическое действие[править | править код]

Этан обладает слабым наркотическим действием (наркотическое действие ослаблено низкой растворимостью в жидкостях организма). Класс опасности — четвёртый[9]. В концентрациях 2—5 об. % он вызывает одышку, в умеренных концентрациях — головные боли, сонливость, головокружение, повышенное слюноотделение, рвоту и потерю сознания из-за недостатка кислорода. В высоких концентрациях этан может вызвать сердечную аритмию, остановку сердца и остановку дыхания. При постоянном контакте может возникнуть дерматит. Сообщается, что при 15—19 об. % этан вызывает повышение чувствительности миокарда к катехоламинам[10].

Интересные факты[править | править код]

Предположительно, на поверхности Титана (спутник Сатурна) в условиях низких температур (—180 °C) существуют целые озёра и реки из жидкой метано-этановой смеси[11].

Примечания[править | править код]

  1. Ethane. Sigma-Aldrich. Дата обращения: 6 апреля 2019. Архивировано 17 ноября 2015 года.
  2. 1 2 David R. Lide, Jr. Basic laboratory and industrial chemicals (англ.): A CRC quick reference handbookCRC Press, 1993. — ISBN 978-0-8493-4498-5
  3. 1 2 3 4 5 Реутов О. А., Курц А. Л., Бутин К. П. Органическая химия : в 4 т.. — 5-е изд. — БИНОМ. Лаборатория знаний, 2014. — Т. 1. — С. 321—326. — ISBN 978-5-9963-1535-2.
  4. Ullmann, 2014, p. 3–5.
  5. 1 2 3 4 Химическая энциклопедия, 1998.
  6. Рабинович В. А., Хавин З. Я. Краткий химический справочник. — Изд. 2-е. — Химия, 1978. — С. 199.
  7. 1 2 Ullmann, 2014, p. 13.
  8. ЭСБЕ, 1904.
  9. Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, н-бутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (недоступная ссылка)
  10. Ullmann, 2014, p. 61.
  11. Mousis O., Schmitt B. Sequestration of Ethane in the Cryovolcanic Subsurface of Titan (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 2008. — April (vol. 677). — doi:10.1086/587141.

Литература[править | править код]

  • Братков А. А. Этан // Химическая энциклопедия : в 5 т. / Гл. ред. Н. С. Зефиров. — М.: Большая Российская энциклопедия, 1998. — Т. 5: Триптофан — Ятрохимия. — С. 491. — 783 с. — 10 000 экз. — ISBN 5-85270-310-9.
  • Schmidt R., Griesbaum K., Behr A., Biedenkapp D., Voges H.-W., Garbe D., Paetz C., Collin G., Mayer D., Höke H. Hydrocarbons (англ.) // Ullmann's Encyclopedia of Industrial Chemistry. — Wiley, 2014. — doi:10.1002/14356007.a13_227.pub3.
  • The chemistry of alkanes and cycloalkanes / Ed. Saul Patai and Zvi Rappoport. — John Wiley & Sons, 1992. — ISBN 0-471-92498-9.
  • Тутурин Н. Н. Этан // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1904. — Т. XLI.