Neodymium(III) nitride

Neodymium(III) nitride
Names
Other names
Neodymium mononitride, azanylidyneneodymium
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.042.937 Edit this at Wikidata
EC Number
  • 247-246-7
  • InChI=1S/N.Nd[1]
    Key: OVMJQLNJCSIJCH-UHFFFAOYSA-N[1]
  • N#[Nd]
Properties
NdN
Molar mass 158.25 g/mol[1]
Structure[2]
Rock Salt (cubic)
Fm3m (No. 225)
a = 512.4 pm
4
Hazards
GHS labelling:
GHS07: Exclamation mark
Related compounds
Other anions
Neodymium(III) arsenide
Neodymium(III) phosphide
Neodymium(III) antimonide
Neodymium(III) bismuthide
Neodymium(III) oxide
Other cations
PrN
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Neodymium(III) nitride is a chemical compound of neodymium and nitrogen with the formula NdN in which neodymium exhibits the +3 oxidation state and nitrogen exhibits the -3 oxidation state. It is ferromagnetic, like gadolinium(III) nitride, terbium(III) nitride and dysprosium(III) nitride.[3] Neodymium(III) nitride is not usually stoichiometric, and it is very hard to create pure stoichiometric neodymium nitride.[4]

Preparation

[edit]

Neodymium(III) nitride can be prepared via an exothermic metathesis reaction between lithium nitride and anhydrous neodymium(III) chloride. Lithium chloride formed in the reaction can be removed by THF, a chemical in which lithium chloride dissolves.[5]

NdCl3 + Li3N → NdN + 3 LiCl

It can also be prepared directly when neodymium reacts directly with nitrogen:

2 Nd + N2 → 2 NdN

It can be prepared when decomposing neodymium amide:

Nd(NH2)3 → NdN + N2 + 3H2

It can also be produced when neodymium is ignited in air (which contains nitrogen),[6] but this also produces other compounds, such as neodymium oxide.

See also

[edit]

References

[edit]
  1. ^ a b c "Neodymium nitride (NDN)".
  2. ^ Adachi, Jun; Katayama, Masahito; Kurosaki, Ken; et al. (2008). "Thermal properties of polycrystalline NdN bulk samples with various porosities". Journal of Nuclear Materials. 376 (1). Elsevier BV: 83–87. doi:10.1016/j.jnucmat.2007.12.009. ISSN 0022-3115.
  3. ^ Temmerman, W. M. (2009). "Chapter 241: The Dual, Localized or Band‐Like, Character of the 4f‐States". In Gschneider Jr., K. A. (ed.). Handbook on the Physics and Chemistry of Rare Earths vol 39. Elsevier. pp. 100–110. ISBN 978-0-444-53221-3.
  4. ^ Nasirpouri, Farzad and Nogaret, Alain (eds.) (2011) Nanomagnetism and Spintronics: Fabrication, Materials, Characterization and Applications. World Scientific. ISBN 9789814273053
  5. ^ Fitzmaurice, J.C.; Hector, A.; Rowley, A.T.; Parkin, I.P. (1994). "Rapid, low energy synthesis of lanthanide nitrides". Polyhedron. 13 (2). Elsevier BV: 235–240. doi:10.1016/s0277-5387(00)86597-3. ISSN 0277-5387.
  6. ^ Cotton, Simon (2006). Lanthanide and Actinide Chemistry. John Wiley & Sons Ltd.