Многочлен Александера

Многочлен Александера — это инвариант узла, который сопоставляет многочлен с целыми коэффициентами узлу любого типа. Джеймс Александер обнаружил его, первый многочлен узла, в 1923. В 1969 Джон Конвей представил версию этого многочлена, ныне носящую название многочлен Александера — Конвея. Этот многочлен можно вычислить с помощью скейн-соотношения, хотя важность этого не была осознана до открытия полинома Джонса в 1984. Вскоре после доработки Конвеем многочлена Александера стало понятно, что похожее скейн-cоотношение было и в статье Александера для его многочлена[1].

Определение

[править | править код]

Пусть K — узел на 3-сфере. Пусть X — бесконечное циклическое накрытие дополнения узла K. Это накрытие можно получить путём разрезания дополнения узла вдоль поверхности Зейферта узла K и склеивания бесконечного числа копий полученного многообразия с границей. Существует накрывающее преобразование[англ.] t, действующее на X. Обозначим первую группу целочисленных гомологий X как . Преобразование t действует на эту группу, так что мы можем считать модулем над . Он называется инвариантом Александера или модулем Александера.

Этот модуль конечно порождён. Матрица копредставления для этого модуля называется матрицей Александера. Если число генераторов r меньше либо равно числу соотношений s, то рассмотрим идеал, порождённый минорами матрицы Александера порядка r. Это нулевой идеал Фиттинга[англ.], или идеал Александера, и он не зависит от выбора матрицы копредставления. Если r > s, полагаем идеал равным 0. Если идеал Александера главный, то порождающий элемент этого идеала и называется многочленом Александера данного узла. Поскольку порождающая может быть выбрана однозначно с точностью до умножения на одночлен Лорана , часто приводят к определённому уникальному виду. Александер выбирал нормализацию, в которой многочлен имеет положительный постоянный член.

Александер доказал, что идеал Александера ненулевой и всегда главный. Таким образом, многочлен Александера всегда существует, и ясно, что это инвариант узла, обозначаемый . Многочлен Александера для узла, образованного одной нитью, имеет степень 2 и для зеркального отражения узла многочлен будет тем же самым.

Вычисление многочлена

[править | править код]

Следующий алгоритм вычисления многочлена Александера была приведена Дж. В. Александером в своей статье.

Возьмём ориентированную диаграмму узла с n пересечениями. Имеется n + 2 областей диаграммы. Чтобы получить многочлен Александера, сначала построим матрицу инцидентности размера (n, n + 2). n строк соответствуют n пересечениям, а n + 2 столбцов соответствуют областям. Значениями элементов матрицы будут 0, 1, −1, t, −t.

Значения элементов матрицы для областей, смежных пересечению. Линия, отмеченная стрелкой, лежит снизу и стрелка указывает направление обхода.

Рассмотрим элемент матрицы, соответствующий некоторой области и пересечению. Если область не прилегает к пересечению, элемент равен 0. Если область прилегает к пересечению, значение элемента зависит от положения. Рисунок справа показывает значение элементов в матрице для пересечения (лежащий ниже участок узла помечен направлением обхода, для лежащего сверху направление не имеет значения). Следующая таблица задаёт значения элементов в зависимости от положения, области относительно лежащей снизу линии.

слева до пересечения: −t
справа до пересечения: 1
слева после пересечения: t
справа после пересечения: −1

Удалим два столбца, соответствующих смежным регионам из матрицы, и вычислим определитель полученной n х n матрицы. В зависимости от того, какие столбцы удалены, ответ будет отличаться на множитель . Во избежание неоднозначности разделим многочлен на наибольшую возможную степень t и умножим на −1, если необходимо, для получения положительного коэффициента. Полученный многочлен есть многочлен Александера.

Многочлен Александера можно вычислить, исходя из матрицы Зейферта[англ.].

После работы Александера Р. Фокс рассматривал копредставление группы узла , и предложил некоммутативный метод вычисления[2], который также позволяет вычислить . Детальное изложение этого подхода можно найти в книге Crowell & Fox (1963).

Пример построения многочлена

[править | править код]
Вычисление многочлена Александера для трилистника.
Стрелка показывает направление обхода, линия со стрелкой проходит снизу.

Построим многочлен Александера для трилистника. На рисунке показаны области (A0, A1, A2, A3, A4) и точки пересечения (P1, P2, P3), а также значения элементов таблицы (рядом с точками пересечения).

Таблица Александера для трилистника примет вид:

ТочкаA0A1A2A3A4
P1-10-tt1
P2-11-t0t
P3-1t-t10

Отбросим первые два столбца и вычислим определитель: .

Разделив полученное выражение на , получим многочлен Александера для трилистника: .

Основные свойства многочлена

[править | править код]

Многочлен Александера симметричен: для всех узлов K.

С точки зрения определения выше, это выражение изоморфизма Пуанкаре где факторгруппа поля частных кольца , рассматриваемого как -модуль, а  — сопряжённый -модуль к (как абелева группа он идентичен , но накрывающее отображение действует как ).

Кроме того, многочлен Александера принимает значение в 1, по модулю равное единице: .

С точки зрения определения, это выражение факта, что дополнение узла -- гомологическая окружность, первые гомологии которой порождены накрывающим преобразованием . Более общо, если является 3-многообразием, таким, что , оно имеет многочлен Александера , определённый как порядковый идеал бесконечного циклического накрывающего пространства. В этом случае , с точностью до знака, равно порядку подгруппы кручения .

Известно, что любой лорановский многочлен с целыми коэффициентами, который симметричен и в точке 1 имеет по модулю значение 1, является многочленом Александера некоторого узла[3].

Геометрическая важность многочлена

[править | править код]

Поскольку идеал Александера является главным, тогда и только тогда, когда группы узла совершенна[англ.]* (её коммутант совпадает со всей группой узла).

Для топологически срезанного узла многочлен Александера удовлетворяет условию Фокса-Милнора , где  — некий другой лорановский многочлен с целыми коэффициентами.

Удвоенный род узла ограничен снизу степенью многочлена Александера.

Михаэль Фридман доказал, что узел на 3-сфере является топологически срезанным, то есть границами «локально плоского» топологического диска на 4-мерном шаре, если многочлен Александера узла тривиален[4].

Луис Кауффман описывает[5] построение многочлена Александера через суммы состояний физических моделей. Обзор этого подхода, а также других связей с физикой даны в другой статье Кауффмана (Kauffman, 2001).

Имеются также другие связи с поверхностями и гладкой 4-мерной топологией. Например, при некоторых предположениях допустима хирургия на 4-многообразии[англ.], при которой окрестность двумерного тора заменяется на дополнение узла, умноженное на S1. Результатом будет гладкое 4-многообразие, гомеоморфное исходному, хотя инвариант Зайберга — Виттена[англ.] меняется (умножается на многочлен Александера узла)[6].

Известно, что узлы с симметрией имеют ограниченные полиномы Александера. См. раздел симметрии в работе Каваути[3]. Однако многочлен Александера может не заметить некоторые симметрии, такие как сильная обратимость.

Если дополнение узла является расслоением над окружностью, то многочлен Александера узла монарен (коэффициенты при старшем и младшем членах равны ). Пусть — расслоение, где  — дополнение узла. Обозначим отображение монодромии как . Тогда , где — индуцированное отображение в гомологиях.

Связь с сателлитными операциями

[править | править код]

Пусть сателлитный узел со спутником , то есть существует вложение , такое что , где — незаузлённый сплошной тор, содержащий . Тогда . Здесь  — целое число, которое представляет в .

Пример: Для связной суммы узлов[англ.] . Если является нескрученным двойным узлом Уайтхеда, то .

Многочлен Александера — Конвея

[править | править код]

Александер показал, что полином Александера удовлетворяет скейн-соотношению. Джон Конвей позже переоткрыл это в другой форме и показал, что скейн-соотношение вместе с выбором значения на тривиальном узле достаточно для определения многочлена. Версия Конвея является многочленом от z с целочисленными коэффициентами, обозначается и называется многочленом Александера — Конвея (а также многочленом Конвея или многочленом Конвея — Александера).

Рассмотрим три диаграммы ориентированных зацеплений .

Скейн-соотношения Конвея:

  • (где O — диаграмма тривиального узла)

Связь со стандартным многочленом Александера задаётся соотношением . Здесь должен быть должным образом нормализован (умножением на ) чтобы выполнялось скейн-соотношение . Заметим, что это даёт многочлен Лорана от t1/2.

Связь с гомологиями Хованова

[править | править код]

В работах Ожвата и Сабо[7] и Расмуссена[8] многочлен Александера представлен как эйлерова характеристика комплекса, гомологии которого являются изотопическими инвариантами рассматриваемого узла , поэтому теория гомологий Флоера[англ.] является категорификацией полинома Александера. Подробнее см. в статье «гомологии Хованова[англ.]»[9].

Вариации и обобщения

[править | править код]
  • Многочлен HOMFLY — похожий, но более тонкий инвариант узлов и зацеплений.

Примечания

[править | править код]
  1. Александер описывает скейн-соотношение в конце статьи под заголовком «разные теоремы», возможно, поэтому они и не были замечены. Джоан Бирман упоминает в своей статье «Новый взгляд на теорию узлов» (New points of view in knot theory, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253—287), что Марк Кидвелл привлёк её внимание к соотношению Александера в 1970.
  2. Fox, 1961.
  3. 1 2 Kawauchi, 1996.
  4. Freedman, Quinn, 1990.
  5. Kauffman, 1983.
  6. Fintushel and Stern (1997) — Knots, links, and 4-manifolds. Дата обращения: 9 июня 2015. Архивировано 29 июня 2021 года.
  7. Ozsvath, Szabo, 2004.
  8. Rasmussen, 2003.
  9. Khovanov, 2006.

Литература

[править | править код]
  • J. W. Alexander. Topological invariants of knots and links // Trans. Amer. Math. Soc.. — 1928. — Т. 30, вып. 2. — С. 275–306. — doi:10.2307/1989123.
  • R. Crowell, R. Fox. Introduction to Knot Theory. — Ginn and Co. after 1977 Springer Verlag, 1963.
  • Colin C. Adams. The Knot Book: An elementary introduction to the mathematical theory of knots. — Revised reprint of the 1994 original. — Providence, RI: American Mathematical Society, 2004. — ISBN 0-8218-3678-1. (accessible introduction utilizing a skein relation approach)
  • R. Fox. A quick trip through knot theory, In Topology of ThreeManifold // Proceedings of 1961 Topology Institute at Univ. of Georgia, edited by M.K.Fort. — Englewood Cliffs. N. J.: Prentice-Hall, 1961. — С. 120–167.
  • Michael H. Freedman, Frank Quinn. Topology of 4-manifolds. — Princeton, NJ: Princeton University Press, 1990. — Т. 39. — (Princeton Mathematical Series). — ISBN 0-691-08577-3.
  • Louis Kauffman. Formal Knot Theory. — Princeton University press, 1983.
  • Louis Kauffman. Knots and Physics. — World Scientific Publishing Companey, 2001.
  • Akio Kawauchi. A Survey of Knot Theory. — Birkhauser, 1996. (covers several different approaches, explains relations between different versions of the Alexander polynomial)
  • M. Khovanov. Link homology and categorification. — 2006. — arXiv:math/0605339.
  • Peter Ozsvath, Zoltan Szabo. Holomorphic disks and knot invariants // Adv. Math., no., 58--6. — 2004. — Т. 186, вып. 1. — С. 58–116. — doi:10.1016/j.aim.2003.05.001. — Bibcode2002math......9056O. — arXiv:math/0209056.
  • J. Rasmussen. Floer homology and knot complements. — 2003. — С. 6378. — Bibcode2003math......6378R. — arXiv:math/0306378.
  • Dale Rolfsen. Knots and Links. — 2nd. — Berkeley, CA: Publish or Perish, 1990. — ISBN 0-914098-16-0. (explains classical approach using the Alexander invariant; knot and link table with Alexander polynomials)