Order-4 hexagonal tiling
From Wikipedia the free encyclopedia
Order-4 hexagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 64 |
Schläfli symbol | {6,4} |
Wythoff symbol | 4 | 6 2 |
Coxeter diagram | |
Symmetry group | [6,4], (*642) |
Dual | Order-6 square tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
In geometry, the order-4 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,4}.
Symmetry
[edit]This tiling represents a hyperbolic kaleidoscope of 6 mirrors defining a regular hexagon fundamental domain. This symmetry by orbifold notation is called *222222 with 6 order-2 mirror intersections. In Coxeter notation can be represented as [6*,4], removing two of three mirrors (passing through the hexagon center). Adding a bisecting mirror through 2 vertices of a hexagonal fundamental domain defines a trapezohedral *4422 symmetry. Adding 3 bisecting mirrors through the vertices defines *443 symmetry. Adding 3 bisecting mirrors through the edge defines *3222 symmetry. Adding all 6 bisectors leads to full *642 symmetry.
*222222 | *443 | *3222 | *642 |
Uniform colorings
[edit]There are 7 distinct uniform colorings for the order-4 hexagonal tiling. They are similar to 7 of the uniform colorings of the square tiling, but exclude 2 cases with order-2 gyrational symmetry. Four of them have reflective constructions and Coxeter diagrams while three of them are undercolorings.
1 color | 2 colors | 3 and 2 colors | 4, 3 and 2 colors | ||||
---|---|---|---|---|---|---|---|
Uniform Coloring | (1111) | (1212) | (1213) | (1113) | (1234) | (1123) | (1122) |
Symmetry | [6,4] (*642) | [6,6] (*662) = | [(6,6,3)] = [6,6,1+] (*663) = | [1+,6,6,1+] (*3333) = = | |||
Symbol | {6,4} | r{6,6} = {6,4}1/2 | r(6,3,6) = r{6,6}1/2 | r{6,6}1/4 | |||
Coxeter diagram | = | = | = = |
Regular maps
[edit]The regular map {6,4}3 or {6,4}(4,0) can be seen as a 4-coloring on the {6,4} tiling. It also has a representation as a petrial octahedron, {3,4}π, an abstract polyhedron with vertices and edges of an octahedron, but instead connected by 4 Petrie polygon faces.
Related polyhedra and tiling
[edit]This tiling is topologically related as a part of sequence of regular tilings with hexagonal faces, starting with the hexagonal tiling, with Schläfli symbol {6,n}, and Coxeter diagram , progressing to infinity.
*n62 symmetry mutation of regular tilings: {6,n} | ||||||||
---|---|---|---|---|---|---|---|---|
Spherical | Euclidean | Hyperbolic tilings | ||||||
{6,2} | {6,3} | {6,4} | {6,5} | {6,6} | {6,7} | {6,8} | ... | {6,∞} |
This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with four faces per vertex, starting with the octahedron, with Schläfli symbol {n,4}, and Coxeter diagram , with n progressing to infinity.
*n42 symmetry mutation of regular tilings: {n,4} | |||||||
---|---|---|---|---|---|---|---|
Spherical | Euclidean | Hyperbolic tilings | |||||
24 | 34 | 44 | 54 | 64 | 74 | 84 | ...∞4 |
Symmetry mutation of quasiregular tilings: 6.n.6.n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *6n2 [n,6] | Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||||||
*632 [3,6] | *642 [4,6] | *652 [5,6] | *662 [6,6] | *762 [7,6] | *862 [8,6]... | *∞62 [∞,6] | [iπ/λ,6] | ||||
Quasiregular figures configuration | 6.3.6.3 | 6.4.6.4 | 6.5.6.5 | 6.6.6.6 | 6.7.6.7 | 6.8.6.8 | 6.∞.6.∞ | 6.∞.6.∞ | |||
Dual figures | |||||||||||
Rhombic figures configuration | V6.3.6.3 | V6.4.6.4 | V6.5.6.5 | V6.6.6.6 | V6.7.6.7 | V6.8.6.8 | V6.∞.6.∞ |
Uniform tetrahexagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [6,4], (*642) (with [6,6] (*662), [(4,3,3)] (*443) , [∞,3,∞] (*3222) index 2 subsymmetries) (And [(∞,3,∞,3)] (*3232) index 4 subsymmetry) | |||||||||||
= = = | = | = = = | = | = = = | = | ||||||
{6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} | |||||
Uniform duals | |||||||||||
V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 | |||||
Alternations | |||||||||||
[1+,6,4] (*443) | [6+,4] (6*2) | [6,1+,4] (*3222) | [6,4+] (4*3) | [6,4,1+] (*662) | [(6,4,2+)] (2*32) | [6,4]+ (642) | |||||
= | = | = | = | = | = | ||||||
h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | hrr{6,4} | sr{6,4} |
Uniform hexahexagonal tilings | ||||||
---|---|---|---|---|---|---|
Symmetry: [6,6], (*662) | ||||||
= = | = = | = = | = = | = = | = = | = = |
{6,6} = h{4,6} | t{6,6} = h2{4,6} | r{6,6} {6,4} | t{6,6} = h2{4,6} | {6,6} = h{4,6} | rr{6,6} r{6,4} | tr{6,6} t{6,4} |
Uniform duals | ||||||
V66 | V6.12.12 | V6.6.6.6 | V6.12.12 | V66 | V4.6.4.6 | V4.12.12 |
Alternations | ||||||
[1+,6,6] (*663) | [6+,6] (6*3) | [6,1+,6] (*3232) | [6,6+] (6*3) | [6,6,1+] (*663) | [(6,6,2+)] (2*33) | [6,6]+ (662) |
= | = | = | ||||
h{6,6} | s{6,6} | hr{6,6} | s{6,6} | h{6,6} | hrr{6,6} | sr{6,6} |
Similar H2 tilings in *3232 symmetry | ||||||||
---|---|---|---|---|---|---|---|---|
Coxeter diagrams | ||||||||
Vertex figure | 66 | (3.4.3.4)2 | 3.4.6.6.4 | 6.4.6.4 | ||||
Image | ||||||||
Dual |
Uniform tilings in symmetry *3222 | ||||
---|---|---|---|---|
64 | 6.6.4.4 | (3.4.4)2 | 4.3.4.3.3.3 | |
6.6.4.4 | 6.4.4.4 | 3.4.4.4.4 | ||
(3.4.4)2 | 3.4.4.4.4 | 46 |
See also
[edit]References
[edit]- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.