深さ優先探索

ウィキペディアから無料の百科事典

探索 > 深さ優先探索
深さ優先探索
Order in which the nodes get expanded
Order in which the nodes get expanded

探索順
一般的な情報
分類: 探索アルゴリズム
データ構造: グラフ
時間計算量:
空間計算量:
最適: いいえ
完全: いいえ
深さ優先探索のイメージ

深さ優先探索(ふかさゆうせんたんさく、: depth-first search, DFS、バックトラック法ともいう)は、グラフを探索するためのアルゴリズムである。アルゴリズムは根から(グラフの場合はどのノードを根にするか決定する)始まり、バックトラックするまで可能な限り探索を行う。「縦型探索」とも呼ばれる。

概要

[編集]

形式的には、深さ優先探索は、探索対象となる木の最初のノードから、目的のノードが見つかるか子のないノードに行き着くまで、深く伸びていく探索である。その後はバックトラックして、最も近くの探索の終わっていないノードまで戻る。非再帰的な実装では、新しく見つかったノードはスタックに貯める。

深さ優先探索の空間計算量は幅優先探索空間計算量より最悪のケースでは同じだが一般的なケースではずっと小さい。また、探索の種類によっては、分岐を選択するためのヒューリスティックな方法にも向いている。両者の時間計算量は、最悪のケースではノード数とたどる辺の数の合計に比例する。

擬似コード

[編集]

再帰あり

[編集]
function 深さ優先探索(v)     v に訪問済みの印を付ける     v を処理する     for each v に接続している頂点 i do         if i が未訪問 then             深さ優先探索(i) 

再帰なし

[編集]
function 深さ優先探索(v)     S ← 空のスタック     v に訪問済みの印を付ける     v を S に積む     while S が空ではない do         v ← S から取り出す         v を処理する         for each v に接続している頂点 i do             if i が未訪問 then                 i に訪問済みの印を付ける                 i を S に積む 

Pythonでの実装(再帰なし)

[編集]

以下は、2頂点間の経路を探す例。なお、これを幅優先探索でやると、辺の重みなしの最短経路問題になる。

def depthFirstSearch( start, goal ):     stack = Stack()     start.setVisited()     stack.push( start )     while not stack.empty():         node = stack.top()         if node == goal:             return stack # stack には2頂点間の経路が入っている         else:             child = node.findUnvisitedChild()             if child == none:                 stack.pop()             else:                 child.setVisited()                 stack.push( child ) 

反復深化深さ優先探索

[編集]

関連項目

[編集]

外部リンク

[編集]