Преобразование Лапласа
Преобразова́ние Лапла́са (ℒ) — интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией вещественного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.
Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями. Так, свёртка двух функций сводится в пространстве изображений к операции умножения, а линейные дифференциальные уравнения становятся алгебраическими.
Определение
[править | править код]Прямое преобразование Лапласа
[править | править код]Преобразованием Лапласа функции вещественной переменной называется функция комплексной переменной [1], такая что:
Правая часть этого выражения называется интегралом Лапласа.
Функцию называют оригиналом в преобразовании Лапласа, а функцию называют изображением функции .
В литературе связь между оригиналом и изображением часто обозначают так: и , причём изображение принято записывать с заглавной буквы.
Обратное преобразование Лапласа
[править | править код]Обратным преобразованием Лапласа функции комплексного переменного называется функция вещественной переменной, такая что:
где — некоторое вещественное число (см. условия существования). Правая часть этого выражения называется интегралом Бромвича[2].
Двустороннее преобразование Лапласа
[править | править код]Двустороннее преобразование Лапласа — обобщение на случай задач, в которых для функции участвуют значения .
Двустороннее преобразование Лапласа определяется следующим образом:
Дискретное преобразование Лапласа
[править | править код]Применяется в сфере систем компьютерного управления. Дискретное преобразование Лапласа может быть применено для решётчатых функций.
Различают -преобразование и -преобразование.
- -преобразование
Пусть — решётчатая функция, то есть значения этой функции определены только в дискретные моменты времени , где — целое число, а — период дискретизации.
Тогда, применяя преобразование Лапласа, получим:
- -преобразование
Если применить следующую замену переменных:
получим -преобразование:
Свойства и теоремы
[править | править код]- Абсолютная сходимость
Если интеграл Лапласа абсолютно сходится при , то есть существует предел
то он сходится абсолютно и равномерно для и — аналитическая функция при ( — вещественная часть комплексной переменной ). Точная нижняя грань множества чисел , при которых это условие выполняется, называется абсциссой абсолютной сходимости преобразования Лапласа для функции .
- Условия существования прямого преобразования Лапласа
Преобразование Лапласа существует в смысле абсолютной сходимости в следующих случаях:
- : преобразование Лапласа существует, если существует интеграл ;
- : преобразование Лапласа существует, если интеграл существует для каждого конечного и для ;
- или (какая из границ больше): преобразование Лапласа существует, если существует преобразование Лапласа для функции (производная от ) для .
Примечание: это достаточные условия существования.
- Условия существования обратного преобразования Лапласа
Для существования обратного преобразования Лапласа достаточно выполнение следующих условий:
- Если изображение — аналитическая функция для и имеет порядок меньше −1, то обратное преобразование для неё существует и непрерывно для всех значений аргумента, причём для .
- Пусть , так что аналитична относительно каждого и равна нулю для , и , тогда обратное преобразование существует и соответствующее прямое преобразование имеет абсциссу абсолютной сходимости.
Примечание: это достаточные условия существования.
- Теорема о свёртке
Преобразованием Лапласа свёртки двух оригиналов является произведение изображений этих оригиналов:
- Умножение изображений
Левая часть этого выражения называется интегралом Дюамеля, играющим важную роль в теории динамических систем.
- Дифференцирование и интегрирование оригинала
Изображением по Лапласу первой производной от оригинала по аргументу является произведение изображения на аргумент последнего за вычетом оригинала в нуле справа:
В более общем случае (производная -го порядка):
Изображением по Лапласу интеграла от оригинала по аргументу является изображение оригинала, делённое на свой аргумент:
- Дифференцирование и интегрирование изображения
Обратное преобразование Лапласа от производной изображения по аргументу есть произведение оригинала на свой аргумент, взятое с обратным знаком:
Обратное преобразование Лапласа от интеграла изображения по аргументу есть оригинал этого изображения, делённый на свой аргумент:
- Запаздывание оригиналов и изображений. Предельные теоремы
Запаздывание изображения:
Запаздывание оригинала:
где — функция Хевисайда.
Теоремы о начальном и конечном значении (предельные теоремы):
- , если все полюсы функции находятся в левой полуплоскости.
Теорема о конечном значении очень полезна, так как описывает поведение оригинала на бесконечности с помощью простого соотношения. Это, например, используется для анализа устойчивости траектории динамической системы.
- Другие свойства
Умножение на число:
Прямое и обратное преобразование Лапласа некоторых функций
[править | править код]Ниже представлена таблица преобразования Лапласа для некоторых функций.
№ | Функция | Временная область | Частотная область | Область сходимости для причинных систем |
---|---|---|---|---|
1 | дельта-функция | |||
1a | запаздывающая дельта-функция | |||
2 | запаздывание -го порядка с частотным сдвигом | |||
2a | степенная -го порядка, | |||
2a.1 | степенная -го порядка, | |||
2a.2 | функция Хевисайда | |||
2b | функция Хевисайда с запаздыванием | |||
2c | «ступенька скорости» | |||
2d | -го порядка с частотным сдвигом | |||
2d.1 | экспоненциальное затухание | |||
3 | экспоненциальное приближение | |||
4 | синус | |||
5 | косинус | |||
6 | гиперболический синус | |||
7 | гиперболический косинус | |||
8 | экспоненциально затухающий синус | |||
9 | экспоненциально затухающий косинус | |||
10 | корень -го порядка | |||
11 | натуральный логарифм | |||
12 | функция Бесселя первого рода порядка , | |||
13 | модифицированная функция Бесселя первого рода порядка , | |||
14 | функция Бесселя второго рода нулевого порядка | |||
15 | модифицированная функция Бесселя второго рода нулевого порядка | |||
16 | функция ошибок | |||
Примечания к таблице:
|
Применения преобразования Лапласа
[править | править код]Преобразование Лапласа находит широкое применение во многих областях математики (операционное исчисление), физики и техники:
- Решение систем дифференциальных и интегральных уравнений — с помощью преобразования Лапласа легко переходить от сложных понятий математического анализа к простым алгебраическим соотношениям.[3]
- Расчёт передаточных функций динамических систем, таких, к примеру, как аналоговые фильтры.
- Расчёт выходных сигналов динамических систем в теории управления и обработке сигналов — так как выходной сигнал линейной стационарной системы равен свёртке её импульсной характеристики с входным сигналом, преобразование Лапласа позволяет заменить эту операцию на простое умножение.
- Расчёт электрических схем. Производится путём решения дифференциальных уравнений, описывающих схему операторным методом.
- Решение нестационарных задач математической физики.
Процедура решения дифференциального уравнения с использованием преобразования Лапласа состоит в следующем:
- По заданному входному воздействию с помощью таблиц соответствий находят изображение.
- По д.у. составляют передаточную функцию.
- Находят изображение величины пунктов 1 и 2.
- Определяют оригинал.[4]
Связь с другими преобразованиями
[править | править код]Фундаментальные связи
[править | править код]Практически все интегральные преобразования имеют схожую природу и могут получаться одно из другого через выражения соответствия. Многие из них являются частными случаями других преобразований. Далее даны формулы, связывающие преобразования Лапласа с некоторыми другими функциональными преобразованиями.
Преобразование Лапласа — Карсона (иногда называют просто преобразование Карсона, иногда, не совсем корректно, используют преобразование Карсона, называя его преобразованием Лапласа) получается из преобразования Лапласа путём домножения изображения на комплексную переменную:
Преобразование Карсона широко используется в теории электрических цепей, так как при таком преобразовании размерности изображения и оригинала совпадают, поэтому коэффициенты передаточных функций имеют физический смысл.
Двустороннее преобразование Лапласа связано с односторонним с помощью следующей формулы:
Непрерывное преобразование Фурье эквивалентно двустороннему преобразованию Лапласа с комплексным аргументом :
В свою очередь, преобразование Лапласа является преобразованием Фурье от функции , где — функция Хевисайда. Частоту преобразования Фурье связывает с комплексным параметром преобразования Лапласа равенство :
Благодаря домножению на затухающую экспоненту , многие неограниченные на функции становятся достаточно быстро затухающими, чтобы к ним было применимо преобразование Фурье. Неограниченный рост на предотвращает функция Хевисайда , которая зануляет функцию при отрицательных .
Примечание: в этих выражениях опущен масштабирующий множитель , который часто включается в определения преобразования Фурье.
Связь между преобразованиями Фурье и Лапласа часто используется для того, чтобы определить частотный спектр сигнала или динамической системы.
Преобразование Меллина
[править | править код]Преобразование Меллина и обратное преобразование Меллина связаны с двусторонним преобразованием Лапласа простой заменой переменных. Если в преобразовании Меллина
положим , то получим двустороннее преобразование Лапласа.
Z-преобразование
[править | править код]-преобразование — это преобразование Лапласа решётчатой функции, производимое с помощью замены переменных:
где — период дискретизации, а — частота дискретизации сигнала.
Связь выражается с помощью следующего соотношения:
Преобразование Бореля
[править | править код]Интегральная форма преобразования Бореля идентична преобразованию Лапласа, существует также обобщённое преобразование Бореля, с помощью которого использование преобразования Лапласа распространяется на более широкий класс функций.
См. также
[править | править код]- Первая теорема разложения
- Вторая теорема разложения
- Преобразование Фурье
- D с чертой-преобразование
- Дифференциальные уравнения
Примечания
[править | править код]- ↑ В отечественной литературе обозначается также через . См., например,
Диткин В. А., Кузнецов П. И. Справочник по операционному исчислению: Основы теории и таблицы формул. — М.: Государственное издательство технико-теоретической литературы, 1951. — 256 с. - ↑ Жевержеев В. Ф., Кальницкий Л. А., Сапогов Н. А. Специальный курс высшей математики для втузов. — М., Высшая школа, 1970. — с. 231
- ↑ Ващенко-Захарченко М. Е. Символическое исчисление и приложение его к интегрированию линейных дифференциальных уравнений. — Киев, 1862.
- ↑ Архитектура системы автоматического управления группой малых беспилотных летательных аппаратов // Информационные технологии и вычислительные системы. — 2018-03-20. — ISSN 2071-8632. — doi:10.14357/20718632180109.
Литература
[править | править код]- Ван дер Поль Б., Бремер Х. . Операционное исчисление на основе двустороннего преобразования Лапласа. — М.: Издательство иностранной литературы, 1952. — 507 с.
- Диткин В. А., Прудников А. П. . Интегральные преобразования и операционное исчисление. — М.: Главная редакция физико-математической литературы издательства «Наука», 1974. — 544 с.
- Диткин В. А., Кузнецов П. И. . Справочник по операционному исчислению: Основы теории и таблицы формул. — М.: Государственное издательство технико-теоретической литературы, 1951. — 256 с.
- Карслоу Х., Егер Д. . Операционные методы в прикладной математике. — М.: Издательство иностранной литературы, 1948. — 294 с.
- Кожевников Н. И., Краснощёкова Т. И., Шишкин Н. Е. . Ряды и интегралы Фурье. Теория поля. Аналитические и специальные функции. Преобразования Лапласа. — М.: Наука, 1964. — 184 с.
- Краснов М. Л., Макаренко Г. И. . Операционное исчисление. Устойчивость движения. — М.: Наука, 1964. — 103 с.
- Микусинский Я. . Операторное исчисление. — М.: Издательство иностранной литературы, 1956. — 367 с.
- Романовский П. И. . Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразования Лапласа. — М.: Наука, 1980. — 336 с.