יריעה אלגברית

ערך זה דורש ידע מוקדם. אם אתם מתקשים להבין את הערך מומלץ לעיין ב:

שלישונית מפותלת. יריעה אלגברית (אפינית) חד-ממדית המתקבלת מחיתוך של שתי יריעות אלגבריות דו-ממדיות במרחב אפיני תלת-ממדי

יריעות אלגבריות (ובאופן כללי יותר סכמות) הן אובייקט המחקר המרכזי בגאומטריה אלגברית. באופן אינטואיטיבי, יריעה אלגברית היא אובייקט גאומטרי שנראה מקומית כמו יריעה אלגברית אפינית (זאת אומרת קבוצת אפסים של מערכת משוואות פולינומית במספר משתנים). בדומה למרחב וקטורי, יריעות אלגבריות מוגדרות תמיד מעל שדה . בדרך כלל סגור אלגברית.

יריעות אפיניות

[עריכת קוד מקור | עריכה]
אליפסה - יריעה אלגברית אפינית חד־ממדית במישור המוגדת על ידי המשוואה
ערך מורחב – יריעה אלגברית אפינית

בגישה הקלאסית, יריעה אלגברית אפינית הוגדרה כקבוצת כל האפסים של משפחת פולינומים מעל שדה סגור אלגברית . כלומר: אם הם קבוצת פולינומים ב- משתנים (כלומר: אזי היריעה האפינית המוגדרת על ידם היא

.

באופן יותר מדויק, מסתכלים על המרחב האפיני כמרחב ה--יות של מספרים משדה כאשר שוכחים את המבנה הטבעי של מרחב וקטורי שיש ל-. על מרחב זה מגדירים k-אלגברה של פונקציות רגולריות מ- ל-. במקרה האפיני פונקציות רגולריות אלה הן פולינומים ב- משתנים. כלומר: . נשים לב ש-k-אלגברה זו היא חוג נתרי לפי משפט הבסיס של הילברט, דבר המבטיח שהיא מקיימת מספר תכונות שימושיות, למשל: כל אידיאל בה הוא נוצר-סופית. על המרחב מגדירים טופולוגיית זריצקי (על שם אוסקר זריצקי) ההופכת אותו למרחב נתרי. בטופולוגיה זו כל הקבוצות הסגורות הן בדיוק הקבוצות מהצורה באשר הוא אידיאל ב-. מאחר ש- היא אלגברה נתרית נוצר סופית ולכן יש מספר סופי של פולינומים היוצרים את . כמו כן מתקיים , ולכן כל הקבוצות הסגורות הן בעצם קבוצות האפסים המשותפים של משפחות סופיות של פולינומים. לקבוצות כאלה קוראים "קבוצות אלגבריות".

תהי קבוצה אלגברית. אזי חוג הפונקציות הרגולריות עליה ניתן על ידי . אם אידיאל ראשוני אז היא יריעה אפינית אי-פריקה בטופולוגיית זריצקי. יריעה אי-פריקה היא יריעה שאי-אפשר להציגה כאיחוד של שתי תת-קבוצות סגורות החלקיות ממש ליריעה.

נשים לב שעבור יריעות אפיניות החוג של הפונקציות הרגולריות

הוא k-אלגברה נוצרת-סופית ללא איברים נילפוטנטיים. משפט האפסים של הילברט נותן אפיון לקשר בין תת-יריעות סגורות של לאידיאלים של .

כל k-אלגברה נוצרת-סופית ללא איברים נילפוטנטיים היא החוג של הפונקציות הרגולריות של יריעה אלגברית מתאימה. מסמנים יריעה זאת והיא מכונה הספקטרום של . בתור קבוצה, יריעה זאת היא אוסף האידיאלים המקסימליים של . קבוצה זאת מסומנת ב ונקראת הספקטרום המקסימלי של .

יריעות פרויקטיביות

[עריכת קוד מקור | עריכה]
משטח בוי. הטבעה אלגברית למחצה של המישור הפרויקטיבי הממשי למרחב
דאבל, משחק קלפים המבוסס על המישור הפרויקטיבי מעל השדה. כל קלף במשחק מייצג ישר במישור זה, וכל תמונה על הקלף מייצגת נקודה על הישר המתאים. במישור הפרויקטיבי, כל שני ישרים נחתכים תמיד בנקודה אחת, ולכן לכל שני קלפים יש בדיוק תמונה משותפת אחת
תמונה זו מוצגת בוויקיפדיה בשימוש הוגן.
נשמח להחליפה בתמונה חופשית.
ערך מורחב – יריעה אלגברית פרויקטיבית

המרחב הפרויקטיבי מהווה הרחבה של המרחב האפיני, בה לכל ישר מוסיפים נקודה נוספת באינסוף. באופן פורמלי יותר, המרחב הפרויקטיבי ה--ממדי מעל הוא אוסף כל הישרים העוברים דרך הראשית במרחב האפיני -ממדי . אם בוחרים היפר מישור שלא עובר דרך ה-0 במרחב ב- אז כל נקודה בהיפר מישור זה נמצאת על ישר יחיד שעובר דרך הראשית. לכן אפשר לחשוב על היפר מישור זה כעל תת-קבוצה במרחב הפרויקטיבי. כמעט כל הנקודות של המרחב הפרויקטיבי נמצאות בקבוצה זאת. אלה שלא נמצאות בה הן גבולות של סדרות של נקודות שנמצאות בה אשר מתאימות לסדרות של נקודות בהיפר מישור ששואפות לאינסוף בכיוון של ישר מסוים. מכיוון שהיפר מישור ב- הוא מרחב אפיני -ממדי אנו רואים שהמרחב הפרויקטיבי הוא מעין השלמה של המרחב האפיני.

בהינתן קבוצה ניתן להגדיר קבוצה המהווה את איחוד כל הישרים שהם איברי . הקבוצה נקראת יריעה פרויקטיבית אם"ם היא יריעה אפינית. ניתן להגדיר טופולוגיה על באופן דומה להגדרת הטופולוגיה של זריצקי על יריעות אפיניות. גם טופולוגיה זאת נקראת הטופולוגיה של זריצקי.

אפשר לחשוב על יריעות פרויקטיביות כעל קומפקטיפיקציות של יריעות אפיניות. לדוגמה, אם אז יריעות פרויקטיביות הן תמיד קומפקטיות (בטופולוגיה המרוכבת) בעוד שיריעות אפיניות אינסופיות לעולם אינן קומפקטיות (בטופולוגיה המרוכבת). מכיוון שכל יריעה אפינית ניתן לשכן במרחב אפיני ואת ניתן לשכן במרחב הפרויקטיבי , ניתן לשכן את ב-. שיכון זה אינו סגור. אולם אפשר לקחת את הסגור זריצקי של בתוך וכך לקבל יריעה פרויקטיבית המכילה את בתור קבוצה פתוחה צפופה.

הקומפקטיות של יריעות פרויקטיביות נותנת להם תכונות טובות יותר, ובמקרים רבים קל יותר לחקור אותם. הסיבה היא שבעוד שבמרחב האפיני דברים יכולים "לברוח לאינסוף", זה בלתי אפשרי במרחב הפרויקטיבי, כך שניסוחים של משפטים הופכים יותר פשוטים. לדוגמה במישור האפיני, שני ישרים שונים יכולים להחתך ב-0 או ב-1 נקודות. בעוד שבמישור הפרויקטיבי שני ישרים שונים נחתכים בדיוק בנקודה 1. דוגמה נוספת היא שפרבולה אליפסה והיפרבולה נהיות איזומורפיות כאשר סוגרים אותן במישור הפרויקטיבי. הסיבה להבדלים ביניהן במישור האפיני היא שאליפסה לא חותכת את האינסוף כלל, פרבולה חותכת אותו בנקודה אחת והיפרבולה ב-2. אם עובדים מעל המספרים המרוכבים ולא הממשיים אז דוגמה זאת מאבדת מעט מערכה מכיוון שאליפסה והיפרבולה איזומורפיות גם כיריעות מרוכבות אפינייות.

לא ניתן לחקור יריעה פורויקטיביות באמצעות חוג פונקציות הרגולריות עליהם, מכיוון שחוג זה קטן מאוד (אם היריעה קשירה או בלתי פריקה אז חוג זה הוא השדה ). את תפקידו של חוג זה תופס חוג הפונקציות הרגולריות על היריעה האפינית . מכיוון שיריעה זאת אינווריאנטית להומותטיה (ז"א כפל בסקלרים מ-), חוג הפונקציות עליה הוא חוג מדורג: פונקציה הומוגנית ממעלה על היא פונקציה המתקבלת מצימצום של פולינום הומוגני ממעלה על המרחב האפיני . הקשר בין יריעות פרויקטיביות לאלגבראות מדורגות דומה לקשר בין יריעות אפיניות לאלגבראות.

מכיוון שניתן לכסות את על ידי העתקים של (המתאימים ל- היפר מישורים ב-) ניתן גם לכסות כל יריעה פרויקטיבית על ידי מספר סופי של יריעות אפיניות. כיסוי כזה מאפשר דרך נוספת לחקור יריעות פרויקטיביות.

יריעות קוואזי-אפיניות וקוואזי-פרויקטיביות

[עריכת קוד מקור | עריכה]
ערכים מורחבים – יריעה קוואזי-אפינית, יריעה קוואזי-פרויקטיבית

קבוצה פתוחה ביריעה אפינית הנתונה על ידי התנאי כאשר היא פונקציה רגולרית על נקראת קבוצה פתוחה בסיסית. על קבוצה כזאת יש מבנה טבעי של יריעה אפינית מכיוון שאפשר לשכן אותה כקבוצה סגורה ב-: אולם לא ניתן לבצע זאת עבור קבוצות פתוחות כלליות. לדוגמה על הקבוצה אין מבנה של יריעה אפינית. קבוצה פתוחה ביריעה אפינית נקראת יריעה קוואזי-אפינית. ניתן לחקור יריעות קוואזי-אפיניות על ידי היריעות האפיניות המכילות אותן או על ידי הקבוצות הבסיסיות המכסות אותן (שהן גם כן יריעות אפיניות).

באופן דומה יריעה קוואזי-פרויקטיבית היא קבוצה פתוחה ביריעה פרויקטיבית. נשים לב שכל יריעה אפינית היא קוואזי-פרויקטיבית (מכיוון שאפשר לשכן מרחב אפיני בתור קבוצה פתוחה במרחב פרויקטיבי).

יריעות קוואזי-פרויקטיביות מהוות מחלקה רחבה של אובייקטים גאומטריים. תתי-קבוצות פתוחות וסגורות ביריעות קוואזי-פרויקטיביות הן יריעות קוואזי-פרויקטיביות. גם היום כאשר המושג של יריעה אלגברית כללית ידוע ומקובל היטב, חלק גדול מהמחקר בגאומטריה אלגברית מתמקד ביריעות קוואזי-פרויקטיביות.

למעשה לא קל למצוא דוגמה של יריעה אלגברית שאיננה קוואזי-פרויקטיבית. המוטיבציה של וייל להגדיר את המושג הכללי של יריעה אלגברית באה מדוגמה מסוימת, אולם דוגמה זאת התבררה לימים כיריעה קוואזי-פרויקטיבית (אם כי מסיבות לא טריוויאליות). דוגמה ליריעה אלגברית לא קוואזי-פרויקטיבית נמצאה רק לאחר כעשור על ידי נגטה.

בדומה ליריעות פרויקטיביות ויריעות קוואזי-אפינית גם יריעות קוואזי-פרויקטיביות ניתן לכסות על ידי מספר סופי של קבוצות פתוחות המהוות יריעות אפיניות.

מגבלות של יריעות קוואזי-פרויקטיביות

[עריכת קוד מקור | עריכה]

למרות המגוון הרחב של יריעות קוואזי-פרויקטיביות יש להן מגבלות רבות. ראשית, הצורך לקבוע שיכון למרחב פרויקטיבי על מנת לדבר על היריעה איננו טבעי. ברמה היותר פרקטית, מסובך לבצע בנייות גאומטריות בסיסיות עם יריעות קוואזי-פרויקטיביות, ולעיתים אף בלתי אפשרי. לדוגמה לא ברור איך להגדיר מבנה של יריעה (קוואזי) פרויקטיבית על מכפלה קרטזית של יריעות (קוואזי) פרויקטיביות. הדבר ניתן לביצוע על ידי שיכון של מכפלה של מרחבים פרויקטיבים למרחב פרויקטיבי, הנקרא שיכון סגרה, אך פתרון זה איננו טריוויאלי, ומעלה משמעותית את ממד המרחב הפרויקטיבי אליו משוכנת היריעה. דוגמה נוספת היא פעולת ההדבקה. בהינתן שני מרחבים טופולוגיים ו- ושיכונים פתוחים ו- ניתן להגדיר את ההדבקה לאורך בתור האיחוד הלא קשיר מודולו יחס השקילות . פעולה זאת אינה ניתנת לביצוע ליריעות קוואזי-פרויקטיביות. הצורך בביצוע פעולה זאת מהווה את המוטיבציה המרכזית להגדרה המודרנית של יריעה אלגברית.

הגדרה פורמלית באמצעות אלומת פונקציות

[עריכת קוד מקור | עריכה]

באופן אינטואיטיבי, ניתן להגדיר יריעה אלגברית כללית בתור "תוצר ההדבקה של מספר יריעות אפיניות". ברמה הפורמלית יש להגדיר מחלקה רחבה יותר של אובייקטים גאומטריים שיריעות אלגבריות מהוות חלק ממנה, ולהגדיר את ההדבקה במחלקה זאת. ישנן מספר מחלקות כאלה. אחת הפופולרית בהן היא "אוסף המרחבים הטופולוגיים עם אלומות פונקציות".

מרחב עם אלומת פונקציות

[עריכת קוד מקור | עריכה]

יהי מרחב טופולוגי. אלומת פונקציות (עם ערכים ב ) על היא התאמה אשר מתאימה עבור כל קבוצה פתוחה , תת-אלגברה (עם יחידה) של אלגברת הפונקציות מ- ל-, כך שמתקיים:

  • לכל קבוצה פתוחה , אם אז הצמצום של ל- שיך ל-
  • לכל כיסוי פתוח , אם אז

אם קבוצה פתוחה אז ניתן להגדיר את הצמצום של ל- על ידי , לכול קבוצה פתוחה .

זוג המורכב ממרחב טופולוגי ואלומת פונקציות עליו, נקרא מרחב עם אלומת פונקציות. אם הוא מרחב עם אלומת פונקציות אז נקראת אלומת המבנה של . יהיו ו- מרחבים עם אלומות פונקציות. העתקה נקראת מורפיזם של מרחבים עם אלומות פונקציות אם רציפה ולכל ו- מתקיים :.

אוסף המרחבים עם אלומות פונקציות הוא קטגוריה, בפרט שני מרחבים עם אלומות פונקציות ו- נקראים איזומורפיים אם קיימות העתקות ו- של מרחבים עם אלומות פונקציות כך ש: ו .

מרחבים עם אלומות פונקציות הם מקרים פרטיים של מרחבים מחויגים.

יריעות אפיניות כמרחב עם אלומת פונקציות

[עריכת קוד מקור | עריכה]

תהי יריעה אפינית. תהי קבוצה פתוחה. מכיוון ש- היא יריעה קוואזי-אפינית, ניתן להגדיר את חוג הפונקציות הרגולריות על . קל לראות שההתאמה נותנת אלומת פונקציות. מכאן ש- מצוידת בטופולוגיה של זריצקי יחד עם אלומת הפונקציות הרגולריות מהווה מרחב עם אלומת פונקציות. קל לראות כי העתקה היא מורפיזם של יריעות, אם"ם היא מורפיזם של מרחבים עם אלומות פונקציות. במילים אחרות קטגוריית היריעות האפיניות היא תת-קטגוריה מלאה בקטגוריית המרחבים עם אלומות פונקציות.

לא כל מרחב עם אלומת פונקציות הוא יריעה אפינית. יריעה אפינית היא מרחב עם אלומת פונקציות שמקיים את התכונות הבאות:[1]

  1. חתך הפונקציות הרגולריות גלובלית על שנסמנו הוא k-אלגברה נוצרת סופית.
  2. ההעתקה מקבוצת המורפיזמים של מרחבים עם אלומת פונקציות לקבוצת ההומומורפיזמים של k-אלגבראות ששולחת את ל- כאשר , היא חח"ע ועל (bijection) לכל מרחב עם אלומת פונקציות .

הגדרה של יריעה אלגברית

[עריכת קוד מקור | עריכה]

מרחב עם אלומת פונקציות נקרא יריעה אלגברית אם קיים כיסוי פתוח סופי

כך ש- איזומורפי (כמרחב עם אלומת פונקציות) ליריעה אלגברית אפינית. מורפיזם של יריעות מוגדר להיות מורפיזם של מרחבים עם אלומות פונקציות. הטופולוגיה על יריעה נקראת הטופולוגיה של זריצקי.

מורפיזם בין יריעות אלגבריות

[עריכת קוד מקור | עריכה]

מורפיזם של יריעות מוגדר בתור מורפיזם בין מרחבים עם אלומת פונקציות. במילים אחרות קטגורית היריעות האלגבריות מוגדרת להיות התת-קטגוריה המלאה של קטגורית המרחבים עם אלומות פונקציות, שהאובייקטים שלה הם יריעות אלגבריות.

פעולות עם יריעות

[עריכת קוד מקור | עריכה]

בניות קטגוריות

[עריכת קוד מקור | עריכה]
יש העתקה יחידה מהאובייקט התחילי (הקבוצה הריקה) לכל יריעה (אליפסה לדוגמה), והעתקה יחידה מכל יריעה לאובייקט הסופי (נקודה).
הישר הפרויקטיבי המתקבל מהדבקה של שני ישרים אפיניים. יש להדביק על פי החצים הכחולים
המישור - מהווה מכפלה קרטזית של שני ישרים

אוסף היריעות האלגבריות הוא קטגוריה. בקטגוריה זאת קיימים גבולות הפוכים סופיים, וגבולות ישרים מסוימים. בפרט ניתן להגדיר את הבניות הבאות:

  • אובייקט תחילי - על הקבוצה הריקה יש מבנה יחיד של יריעה אלגברית
  • אובייקט סופי - על קבוצת היחידון (ולמעשה על כל קבוצה סופית) יש מבנה יחיד של יריעה אלגברית
  • קו-מכפלה - עבור 2 יריעות אלגבריות ו- ניתן להגדיר מבנה טבעי של יריעה אלגברית על האיחוד הלא קשיר של ו- באופן הבא:

  • pushout - באופן דומה אפשר להגדיר מבנה של יריעה על הדבקה של שתי יריעות לאורך תת-קבוצה פתוחה. ניתן גם להגדיר הדבקה של יריעוֹת לאורך תת-קבוצה סגורה.
  • מכפלה - על המכפלה הקרטזית של שתי יריעות ו- ניתן להגדיר מבנה של יריעה. עם זאת, טופולוגיית זריצקי על היריעה איננה טופולוגיית המכפלה של היריעה . אם ו- אפיניות אז ניתן להגדיר את מבנה היריעה (האפינית) על בקלות, למשל בהתבסס על השיכון למרחב אפיני. במקרה הכללי ניתן לכסות את ו- על ידי יריעות אפיניות, ומכאן להגדיר את מבנה היריעה על .
  • מכפלת סיבים - יהיו העתקות של יריעות אלגבריות. מכפלת הסיבים היא תת-קבוצה סגורה (זריצקי) במכפלה מכאן ניתן להגדיר עליה מבנה של יריעה.
  • גבול הפוך - עבור כל דיאגרמה סופית של יריעות אלגבריות ניתן לבטא את הגבול ההפוך על פי באמצעות מכפלות סיבים ולכן הגבול קיים בקטגוריה של יריעות אלגבריות.

בניות אינפיניטסימליות

[עריכת קוד מקור | עריכה]
המרחב המשיק לספירה

בנוסף ניתן להגדיר בניות רבות המוגדרות עבור יריעות חלקות בטופולוגיה דיפרנציאלית וגאומטריה דיפרנציאלית עבור יריעות אלגבריות. לדוגמה עבור יריעה אלגברית ונקודה ניתן להגדיר את המרחב המשיק ל- ב-. מושג המרחב המשיק הוא מקומי. לכן די להגדירו עבור יריעה אפינית. במקרה זה הוא המרחב הדואלי ל-, כאשר הוא אידיאל הפונקציות שמתאפסות ב-.

ערך מורחב – ניפוח (גאומטריה אלגברית)
המחשה גאומטרית של הניפוח של המישור בנקודה. אפשר לחשוב על הניפוח הזה בתור הגרף של הפונקציה (הרב ערכית) הנתונה על ידי הנוסחה: . העתקת הניפוח היא ההיטל של גרף זה על מישור ה- (שקוף). הישרים השחורים עוברים לישרים שונים במישור. הישר האדום עובר כלו ל-0. הוא נקרא הסיב המיוחד. התמונה חסומה בגובה. ובפרט לא רואים בה את ה־ של הסיב המיוחד ואת הישר בו שעובר (תחת ההטיל) לציר ה-

בנייה חשובה נוספת של יריעות אלגבריות היא הניפוח (blow-up). ניפוח של יריעה אלגברית לאורך תת-יריעה סגורה היא בנייה מסוימת של יריעה ביחד עם העתקה נאותה אשר מהווה איזומרפיזם מחוץ ל-. באופן אינטואיטיבי הניפוח מחליף את בפרויקטיביזציה של האגד הנורמלי ל-. לניפוח חשיבות רבה בגאומטריה אלגברית, בין השאר מכיוון שהוא מהווה את הכלי המרכזי לבנית התרת סינגולריות.

מחלקות של יריעות והעתקות

[עריכת קוד מקור | עריכה]
אליפסה - יריעה אלגברית בלתי פריקה
שני קווים נחתכים - יריעה אלגברית פריקה אך קשירה
היפרבולה - יריעה אלגברית בלתי פריקה (ולכן גם קשירה) שקבוצת הנקודות הממשיות שלה איננה קשירה (ביחס לטופולוגיה הממשית)
שני קווים מקבילים - יריעה אלגברית לא קשירה (ולכן גם פריקה)
יריעה לא פרידה המתקבלת מהדבקה של שני ישרים לאורך המשלים לראשית. יש להדביק לפי החצים הכחולים אך לא להדביק את הראשית (המסומנת בצלב אדום)
היפרבולואיד חד-יריעתי - דוגמה ליריעה חלקה
קונוס ריבועי - דוגמה ליריעה לא חלקה (סינגולרית). ליריעה זאת נקודה סינגולרית יחידה (ולכן מבודדת). הסינגולריות שלה היא חיתוך מלא ובפרט גורנשטין ובפרט כהן-מקולי. כמו כן היא סינגולריות סימפלקטית ובפרט רציונלית ובפרט נורמלית. עבור סינגולריות גורנשטין, הרציונליות שקולה לקנוניות ולכן היא גם קנונית ובפרט לוג קנונית.

תכונות טופולוגיות

[עריכת קוד מקור | עריכה]

טופולוגית זריצקי על יריעה אלגברית איננה משקפת את המבנה הגאומטרי של היריעה. למשל, היא כמעט לעולם אינה האוסדורפית ותמיד (קוואזי-) קומפקטית. לכן רוב המושגים מטופולוגיה (ובפרט מטופולוגיה אלגברית) לא יהיו רלוונטיים עבור יריעות אלגבריות, ובדרך כלל יהיה צורך להגדיר אנלוגים שלהם באמצעות שאר המבנה על יריעה אלגברית. עם זאת יש מספר מושגים בסיסיים שניתן להגדיר על ידי הטופולוגיה בלבד.

  • יריעה אלגברית נקראת אי-פריקה (irreducible) אם היא אי-פריקה כמרחב טופולוגי, זאת-אומרת שלא ניתן להציגה כאיחוד של שתי קבוצות סגורות שאינן היריעה כולה.
  • יריעה אלגברית נקראת קשירה אם היא קשירה כמרחב טופולוגי (ביחס לטופולוגיית זריצקי). בפרט כל ירעה קשירה היא בלתי פריקה.
  • הממד של יריעה הוא ממד קרול שלה כמרחב טופולוגי, זאת-אומרת האורך המקסימלי של שרשרת עולה ממש של קבוצות סגורות אי-פריקות שאינן היריעה כולה.

תכונות גלובליות

[עריכת קוד מקור | עריכה]

שתי מחלקות בסיסיות של יריעות אלגברית הן יריעות פרידות ויריעות שלמות.

  • יריעה נקראת פרידה אם האלכסון הוא קבוצה סגורה (זריצקי) ב . מושג זה אנלוגי להאוסדורפיות. כל יריעה אפינית היא פרידה.
  • יריעה נקראת שלמה אם לכל יריעה ההטלה היא העתקה סגורה (זאת-אומרת שהיא מעבירה קבוצה סגורה לקבוצה סגורה). מושג זה אנלוגי לקומפקטיות. יריעה קואזי-פרויקטיבית היא פרידה אם"ם היא פרויקטיבית.

הערה: אם נחזור על הגדרות אלה עבור מרחבים טופולוגיים, נקבל הגדרות שקולות להאוסדורפיות וקומפקטיות. אולם מושגים אלה אינם שקולים להאוסדורפיות וקומפקטיות (לפי טופולגית זריצקי) מכיוון שטופולגיית המכפלה על שונה מהטופולגיה על .

בנוסף יש עוד תכונות גלובליות רבות הנחקרות בגאמטריה אלגברית, למשל תכונות המבוססות על מושג השקילות הבירציונלית (כמו רציונליות) ותכונות המבוססות על אלומות קוהרנטיות (כמו Fano ו Calabi-Yau)

תכונות מקומיות

[עריכת קוד מקור | עריכה]

התכונה המקומית הבסיסית של יריעות אלגבריות היא חלקות. יריעה אלגברית נקראת חלקה בנקודה אם ממד המרחב המשיק ל- בנקודה שווה לממד היריעה בנקודה . יריעות אלגבריות חלקות דומות מאוד למרחב אפיני באופן מקומי, אף על פי שאין איזומורפיזם בין סביבת זריצקי של נקודה חלקה לקבוצה פתוחה במרחב אפיני. לכן כאשר חוקרים את המבנה המקומי של יריעה אלגברית מתעניינים בדרך כלל ביריעות סינגולריות (זאת-אומרת לא חלקות) ומחקר זה נקרא תורת הסינגולריות. בין התכונות השונות של סינגולריות אפשר למנות: נורמליות, כהן-מקולי, גורנשטין, חיתוך מלא, מחלק עם חיתוך נורמלי, סינגולריות רציונלית, סינגולריות (לוג) קנונית, סינגולריות (לוג) טרמינאלית, סינגולריות סימפלקטית ועוד.

העתקות ומשפחות של יריעות

[עריכת קוד מקור | עריכה]

אחת הדרכים לחשוב על העתקה בין יריעות אלגבריות היא בתור משפחה של יריעות אלגבריות, כאשר הפרמטר של המשפחה היא נקודה שנעה ב-, ולכל נקודה אנו מתאימים את היריעה . לפי הגישה היחסית של גרותנדיק אפשר לנסות להכליל כל מושג שהוגדר עבור יריעות אלגבריות, גם עבור משפחה של יריעות אלגבריות או במילים אחרות - העתקות. בצורה זאת ניתן להגדיר את המושגים הבאים:

תכונות אלו הן בעצם תכונות של משפחות של יריעות יותר משהן תכונות של העתקות. תכונות כאלה תמיד מקומיות (על פי הטווח). יש גם תכונות מקומיות שאין להן גרסה מובהקת עבור יריעה, למשל, העתקה סופית, העתקה קוואזי-סופית, העתקת אטל, העתקה שטוחה ושקילות בירציונלית (על שלוש הדוגמאות הראשונות אפשר לחשוב כעל גרסאות יחסיות שונות של יריעות סופיות).

מערכות מונחים שונות

[עריכת קוד מקור | עריכה]

מבחינה היסטורית נלמדו תחילה יריעות אפיניות אז יריעות פרויקטיביות אחריהן יריעות קוואזי-פרויקטיביות ולבסוף יריעות כללית, שהוגדרו זמן קצר לפני סכמות שהן הכללה מרחיקת לכת של יריעות. לפני שנוסחה ההגדרה המודרנית של יריעה, המילה יריעה התייחסה רק ליריעות קוואזי-פרויקטיביות, עד היום ישנם ספרים שמשתמשים בשם יריעות רק עבור יריעות קוואזי-פרויקטיביות ודנים בשאר היריעות במסגרת דיון כללי יותר על סכמות. רוב המקורות משתמשים במילה יריעות במובן רחב יתר אך לפעמים מוסיפים מגבלות מסוימות. במקרים רבים דורשים מיריעה להיות פרידה ולעיתים גם בלתי פריקה.

מאידך לעיתים המושג יריעות אלגבריות כולל גם יריעות מעל שדות לא סגורים אלגברית. במקרה כזה ההגדרה למעלה לא תקפה כיוון שיש מערכות משוואות פולינומיות ללא פתרונות מעל שדה לא סגור אלגברית שהיריעה שהם מגדירים אינה ריקה. לדוגמה המשוואה מגדירה יריעה לא ריקה מעל אולם אין לה פתרונות מעל . יש מספר הגדרות אלטרנטיביות שתקפות לשדות לא סגורים אלגברית (ראה להלן) אך בדרך כלל מטפלים במקרה זה במסגרת כללית יתר של סכמות.

מונחים בשפות שונות

[עריכת קוד מקור | עריכה]

באנגלית יריעה אלגברית נקראת "algebraic variety". בעברית וגם ברוסית, המילה "יריעה" משמשת גם לתיאור יריעה טופולוגית ובפרט יריעה חלקה, שבאנגלית נקראת "manifold". במקרים רבים יריעה אלגברית היא גם יריעה חלקה, אך יש לזכור שמדובר בשתי קטגוריות שונות זו מזו.

נקודות של יריעה

[עריכת קוד מקור | עריכה]

לפי ההגדרה שמופיעה למעלה יריעה אלגברית היא קבוצה עם מספר מבנים נוספים (טופולוגיה ואלומת פונקציות). לקבוצה זאת קוראים לעיתים קבוצת ה--נקודות של היריעה, כאשר הוא השדה מעליו מוגדרת היריעה. מסמנים קבוצה זאת .

הצורך להפריד בין יריעה לקבוצה מגיע מהמקרה של יריעות המוגדרות מעל שדות לא סגורים אלגברית (או באופן כללי יתר סכמות), במקרה זה ההגדרה של יריעה אלגברית שונה, והקשר בין היריעה לקבוצת הנקודות שלה חלש יותר. לדוגמה היריעה המוגדרת על ידי המשוואה לא ריקה אך קבוצת ה--נקודות שלה ריקה.

בנוסף, הפרדה זאת מאפשרת להגדיר מבנים נוספים על הקבוצה שאינם מתואמים עם המבנים על היריעה (הטופולוגיה ואלומת הפונקציות). למשל, אם השדה הוא שדה טופולוגי אז ניתן להגדיר טופולוגיה מתאימה על קבוצת ה--נקודות של היריעה. טופולוגיה זאת תהיה בדרך כלל חזקה יותר מהטופולגיה של זריצקי. במקרה שהיריעה היא אפינית טופולוגיה זאת מוגדרת להיות הטופולוגיה המושרית מ- (קל לראות שהטופולוגיה לא תלויה בצורה שאנו מציגים את היריעה בתור קבוצה סגורה זריצקי ב-). ליריעה כללית קבוצה נקראת פתוחה אם לכל קבוצה פתוחה אפינית הקבוצה פתוחה ב .

ניתן גם להגדיר באופן דומה את הקבוצה של נקודות כאשר הוא -אלגברה (קמוטטיבית עם יחידה) כלשהי.

קשר עם יריעות אנליטיות וחלקות

[עריכת קוד מקור | עריכה]
ערכים מורחבים – יריעה אנליטית, יריעה חלקה

אם היא יריעה אלגברית חלקה המוגדרת מעל שדה המספרים המרוכבים אז ניתן להגדיר על קבוצת הנקודות שלה, , מבנה של יריעה חלקה באופן הבא: במקרה ש- היא יריעה אפינית חלקה אז קל לראות ש היא תת-יריעה חלקה של . במקרה הכללי בוחרים כיסוי פתוח של על ידי יריעות אפיניות, והוא מגדיר אטלס חלק.

באופן דומה, אם היא יריעה אלגברית המוגדרת מעל אז ניתן להגדיר על , מבנה של יריעה אנליטית.

בניות דומות קימות גם לשדות לא סגורים אלגברית. בפרט אם היא יריעה אלגברית חלקה המוגדרת מעל שדה המספרים הממשיים אז ניתן להגדיר על מבנה של יריעה חלקה. כמו כן אם היא יריעה אלגברית המוגדרת מעל שדה מקומי אז ניתן להגדיר על מבנה של יריעה אנליטית מעל .

ערך מורחב – אגד וקטורי

בדומה למרחבים טופולוגיים ויריעות דיפרנציאבילות, המושג אגד קיים גם על יריעות אלגבריות. ניתן להגדיר אגד על יריעה אלגברית בתור יריעה אלגברית , יחד עם מורפיזם ומבנה של מרחב וקטורי על הסיב של כל נקודה כך שמקומית (בטופולוגיית זריצקי) מבנה זה איזומורפי ל כאשר הוא מרחב ליניארי.

לאגדים בגאומטריה אלגברית יש אותם תפקידים כמו לאגדים בטופולוגיה דיפרנציאלית. בפרט, עבור יריעה אלגברית חלקה ניתן להגדיר את האגד המשיק ואגדים קשורים אליו (אגד קו-משיק, אגד התבניות הדיפרנציאליות, ועוד). ישנם מספר אגדים בטופולוגיה דיפרנציאלית שאין אגד על יריעות אלגבריות המהווה מושג מקביל להם, למשל אגד האוריינטציות ואגד הצפיפויות. זאת משום שהגדרה של אגדים אלה מתבססת על יחס הסדר ב-. בנוסף, בגאומטריה אלגברית יש חשיבות מיוחדת לאגדים חד־ממדיים. אלה נקראים אגדים קווים, ונחקרים בעיקר במונחים של אלומות קוהרנטיות (ראה להלן).

אלומות על יריעות

[עריכת קוד מקור | עריכה]
ערך מורחב – אלומה

אחד הכלים המרכזיים לחקר יריעות אלגבריות הוא חקר של סוגים שונים של אלומות עליהן. בין היתר, אלומות משמשות למטרות הבאות:

אלומות קוהרנטיות וקוואזי-קוהרנטיות

[עריכת קוד מקור | עריכה]
ערכים מורחבים – אלומה קוהרנטית, אלומה קוואזי-קוהרנטית

הסוגים הבסיסיים של אלומות על יריעות אלגבריות הם אלומות קוהרנטיות וקוואזי-קוהרנטיות. על יריעה אפינית ניתן להגדיר אלומות קוואזי-קוהרנטיות באופן הבא: בהינתן מודול מעל נגדיר אלומה על ידי . אלומות שמתקבלות באופן זה נקראות קוואזי-קוהרנטיות.

אם נוצר סופית אז האלומה תקרא קוהרנטית. קטגוריית האלומות הקוואזי-קוהרנטיות על יריעה אפינית שקולה לקטגוריית המודולים מעל חוג הפוניקציות הגלובליות על היריעה. באופן דומה קטגוריית האלומות הקוהרנטיות על יריעה אפינית שקולה לקטגוריית המודולים נוצרים סופית מעל חוג הפונקציות הגלובליות על היריעה.

ממשפט סר נובע שתכונת ה (קוואזי-)קוהרנטיות היא מקומית. זאת אומרת שאם הוא כיסוי פתוח אפיני של יריעה אפינית אז אלומה על היא (קוואזי-)קוהרנטית אם היא (קוואזי-)קוהרנטית. עבור יריעה לא אפינית, אלומה (קוואזי-)קוהרנטית מוגדרת להיות אלומה שהיא (קוואזי-)קוהרנטית באופן מקומי.

במקור השתמשו באלומות קוהרנטיות כדי לחקור אפסים וקטבים של פונקציות רציונליות. מחקר זה הוביל למשפט רימן-רוך, מחקר ההומולוגיה של אלומות קוהרנטיות ודואליות סר.

קשר לאגדים

[עריכת קוד מקור | עריכה]

אלומות קוהרנטיות משמשות גם למחקר של משפחות מרחבים ליניאריים בעלות פרמטר שנע ביריעה אלגברית. בהינתן אלומה קוהרנטית על יריעה אלגברית ניתן להגדיר את הסיב של בנקודה על ידי

,

כאשר היא סביבה פתוחה אפינית של , ו הוא האידיאל המקסימלי שמתאים לנקודה .

אם האלומה היא חופשית מקומית, זאת אומרת שקיים כיסוי אפיני פתוח כך ש הוא מודול חופשי מעל , אז על מערכת המרחבים יש מבנה טבעי של אגד. זאת אומרת שקיים אגד כך שהסיבים שלו איוזומורפיים קנונית לסיבי האלומה . יתר על כן ההתאמה מגדירה שקילות קטגורית בין קטגוריית האלומות החופשיות על מקומית וקטגוריית האגדים על .

לאור האמור למעלה, לעיתים מגדירים אגד וקטורי על יריעה אלגברית בתור אלומה קוהרנטית חופשית מקומית. כמו כן ניתן לחשוב על אלומות קוהרנטיות בתור הכללת המושג אגד. הכללה זאת מאפשרת להגדיר גרסאות של האגדים הסטנדרטיים מטופולוגיה דיפרנציאלית גם עבור יריעות לא חלקות. לדוגמה, אף על פי שעל יריעה אלגברית לא חלקה לא ניתן להגדיר את האגד הקו-משיק (זאת אומרת אגד שסיביו הם המרחבים הקו משיקים), ניתן להגדיר את האלומה הקו-משיקה (אלומה שסיביה הם המרחבים הקו משיקים).

קטגורית האלומות הקוהרנטיות

[עריכת קוד מקור | עריכה]

קטגורית האלומות ה (קוואזי-)קוהרנטיות היא קטגוריה אבלית. שתי הקטגוריות כמו גם הקטגוריות הנגזרות שלהן הן אינווריאנטים חשובים של יריעה אלגברית. חקר היחסים בין קטגורית אלה עבור יריעות שונות מתואר בספר Residues and duality. חקר זה מכיל בין היתר את דואליות גרותנדיק שהיא הכללה של דואליות סר.

סוגי אלומות נוספים

[עריכת קוד מקור | עריכה]

אלומות קונסטרקטביליות

[עריכת קוד מקור | עריכה]
ערכים מורחבים – אלומה קונסטרקטבילית

טופולוגית זריצקי היא טופולוגיה חלשה מאוד. היא אומנם מספיקה למחקר בסיסי של יריעות אלגבריות אך איננה משקפת את המבנה של היריעה מנקודת מבט של טופולוגיה אלגברית. לכן קשה לחקור את הגאומטריה של היריעה על ידי אלומות בטופולוגית זריצקי. אם יריעה מוגדרת מעל שדה המרוכבים אז על יש טופולוגיה המושרית מהטופולוגיה של . קטגוריית האלומות בטופולגיה זאת משקפת את המבנה הגאומטרי של היריעה טוב יותר. חשיבות מיוחדת ניתנת לאלומות קבועות מקומית בטופולוגיה זאת. קטגוריית האלומות הקבועות מקומית אינה נשמרת תחת פעולות בסיסיות עם אלומות (כגון דחיפה ומשיכה). אלומות קונסטרקטביליות (ניתנות לבנייה) מוגדרות בתור כל האלומות שמתקבלות מדחיפה ומשיכה של אלומות קבועות מקומית, תחת העתקות אלגבריות.

אלומות אטל

[עריכת קוד מקור | עריכה]
ערכים מורחבים – אלומת אטל, טופולוגית אטל

הטופולוגיה הנ"ל על איננה מוגדרת במונחים של גאומטריה אלגברית, ובפרט אינה ניתנת להכללה לשדות סגורים אלגברית כלליים. בשנות החמישים והשישים גרותנדיק פיתח מספר אנלוגים לטופולוגיה זאת המוגדרים במונחים של גאומטריה אלגברית ותקפים מעל שדה כלשהו. האנלוג הנפוץ ביותר הוא טופולוגיית אטל. טופולוגיית אטל איננה טופולוגיה במובן הרגיל של המילה, אלא במובן כללי יותר שנקרא טופולוגיית גרותנדיק. המושג טופולוגיית גרותנדיק תוכנן כך שיהיה אפשר להגדיר את המושג אלומה על מרחב המצויד בטופולוגיית גרותנדיק. אלומות על יריעה אלגברית ביחס לטופולוגיית אטל נקראות אלומות אטל. טופולגיית אטל לא מהווה תחליף מושלם לטופולוגיה על . בעוד שאלומות של קבוצות (וחבורות) סופיות בטופולוגיית אטל דומות מאוד לאלומות עלֹ (למשל קטגורית האלומות הקבועות מקומית של קבוצות סופיות בטופולוגעיית אטל על , שקולה קטגורית האלומות הקבועות מקומית בעלות גבעולים סופיים על ) אלומות של קבוצות (וחבורות) אין-סופיות בטופולוגיית אטל לא דומות כלל לאלומות עלֹ ועניות הרבה יותר.

באנלוגיה עם המקרה המרוכב, ניתן להגדיר עבור כל שדה וכל יריעה המוגדרת מעל את המושג אלומות אטל קונסטרוקטביליות מעל . בפרט, עבור חוג סופי נתן להגדיר את המושג אלומות אטל קונסטרוקטביליות של -מודולים מעל . מקרה פרטי חשוב הוא כאשר החוג הסופי הוא עבור מספר ראשוני הזר למציין השדה . בדרך כלל הביטוי אלומות אטל מתייחס למקרה זה.

אלומת -אדיות

[עריכת קוד מקור | עריכה]
ערכים מורחבים – אלומה -אדית, אלומות וייל

כאמור, אם אינו חוג סופי, אז אלומות אטל של -מודולים אינן משקפות את הגאומטריה של . לכן לא ניתן להגדיר אלומות אטל של -מודולים. תחת זאת משתמשים בבנייה הבאה: משאיפים את לאינסוף ומקבלים קטגוריה שנקראת "קטגוריית האלומות הקונסטרוקטביליות של -מודולים" או בקצרה "קטגוריית האלמות ה--אדיות". למרות שמה, האובייקטים בקטגוריה זאת אינם אלומות כלל. בפרט הן אינן אלומות של -מודולים בטופולוגיית אטל. מקטגוריה זאת ניתן לבנות קטגוריוה הנקראת "קטגוריית האלומות הקונסטרוקטביליות של -מודולים". באופן דומה עבור כל הרכבה של ניתן להגדיר אלמות הקונסטרוקטביליות של -מודולים ו--מודולים. על ידי מעבר לגבול, מקבלים את הקטגוריות של האלומות הקונסטרוקטביליות של -מודולים ו--מודולים. כל סוגי האלומות האלה נקראות לעיתים "אלמות -אדיות".

מכיוון ש- איזומורפי ל- אפשר להגדיר כך (באופן לא קנוני) אלומות מרוכבות ליריעה אלגברית מעל שדה כלשהו. מכאן אפשר להגדיר הומולוגיות עם מקדמים ב- ומספרי בטי ליריעה אלגברית מעל שדה כלשהו. בנייה זאת מראה בפרט שאם היא יריעה אלגברית מרוכבת ו- היא יריעה המתקבלת מ- על ידי הפעלת אוטומורפיזם על שדה המרוכבים אז מספרי בטי של ו שווים. טענה זאת עלולה להפתיע מכיוון שהחבורות היסודית של ו- שונות במקרים מסוימים. כאשר הוא שדה סופי, פייר דלין הגדיר גרסה מעט שונה לאלומה -אדית הנקראת אלומת וייל. אלומות -אדיות ואלומות וייל משחקות תפקיד מרכזי בהוכחה של השערות וייל.

ערכים מורחבים – D-מודולים

משתמשים באלומת גם כדי לחקור מערכות משוואות דיפרנציאליות על יריעות אלגבריות.

כמו שבשביל לחקור משוואות פולינומיות בתורת גלואה משתמשים בסדרות, וכדי לחקור מערכות משוואות פולינומיות משתמשים באלגבראות, כך גם כדי לחקור מערכות משוואות דיפרנציאליות חלקיות ליניאריות משתמשים במודולים מעלֹ חוג האופרטורים הדיפרנציאליים ב- משתנים. אם רוצים לחקור משוואות דיפרנציאליות חלקיות על יריעה אלגברית אפינית חלקה אז יש להחליף את חוג האופרטורים הדיפרנציאליים ב- משתנים בחוג האופרטורים הדיפרנציאליים על היריעה. אם היריעה אינה אפינית אז ייתכן שחוג האופרטורים הדיפרנציאליים יהיה קטן מדי (כמו שחוג הפונקציות הרגולרית על יריעה לא אפינית קטן מדי). לכן יש לחקור אלומות מודולים מעל אלומת החוגים של האופרטורים הדיפרנציאליים. גם לאלומות אלו אפשר להגדיר את תכונת הקוהרנטיות והקוואזי-קוהרנטיות. אלומות קוהרנטיות (ולעיתים גם קוואזי-קוהרנטיות) של מודולים מעל אלומת החוגים של האופרטורים הדיפרנציאליים נקראות D-מודולים. ניתן גם להגדיר את קטגוריית ה--מודולים ליריעות לא חלקות, אם כי בצורה שונה.

כאמור אפשר לחשוב על -מודול על יריעה כעל מערכת משוואות דיפרנציאליות. אם אז אפשר להגדיר מתי פונקציה אנליטית על היא פתרון של . אוסף הפתרונות של מהווה אלומה קונסטרוקטבילית עלֹ . בנייה זאת מגדירה פונקטור מקטגורית ה--מודולים על לקטגורית האלומות על . פונקטור זה משרה שקילות מתת קטגוריה של הקטגוריה הנגזרת של -מודולים לקטגוריה הנגזרת של אלומות קונסטרוקטביליות. שקילות זאת שנקראת שקילות רימן-הילברט הוכחה על ידי מאסאקי קשיברו בהתבסס על עבודתו של פייר דלין.

אלומות סוטות

[עריכת קוד מקור | עריכה]
ערכים מורחבים – אלומות סוטות

בהתבסס על עבודה של מרק גורצקי ורוברט מקפרסון תיארו יוסף ברנשטיין, אלכסנדר בילינסון ופייר דלין את התת-קטגוריה של הקטגוריה הנגזרת של אלומות קונסטרוקטביליות המתאימה ל--מודולים תחת שקילות רימן-הילברט. קטגוריה זאת של אלומות נקראת קטגורית האלומות הסוטות. האובייקטים בקטגוריה זאת אינן אלומות אלא קומפלקסים מסוימים של אלומות. ברנשטין, בילינסון ודלין הגדירו גם אנלוגים של קטגוריה זאת עבור אלומות -אדיות ואלומות וייל. לא ניתן לתאר אנלוגים אלו בעזרת -מודולים מכיוון ששקילות רימן הילברט לא תקפה כאשר .

לעיתים קרובות, אלומות סוטות מתנהגות טוב יותר תחת ששת הפנקטורים של גרותנדיק (הפעולות הסטנדרטיות עם אלומות: דחיפה, משיכה וכדומה) מאשר אלומות קונסטרוקטביליות (למשל במשפט הפירוק (Decomposition theorem)). כמו כן לקטגורית האלומות הסוטת יש תכונות טובות יותר בתור קטגוריה אבלית מאשר לקטגורית האלומות קונסטרוקטביליות. למשל כל אלומה סוטה היא מאורך סופי. יתרון מובהק נוסף של האלומות הסוטות היא בנייה הנקראת הרחבה סוטה. בנייה זאת מבוססת על העובדה שלכל אלומה סוטה בלתי-פריקה על תת-יריעה קיימת ויחידה אלומה סוטה בלתי-פריקה המרחיבה אותה על . בנייה זאת משמשת לבניית אלומות סוטות מעיניניות רבות, למשל אלומות קרקטרים של לוסטיג.

הגדרות אלטרנטיביות

[עריכת קוד מקור | עריכה]

בספרות קיימות מספר דרכים נוספות להגדיר יריעה אלגברית.

אטלסים ומפות

[עריכת קוד מקור | עריכה]

ניתן להגדיר יריעה אלגברית בצורה דומה לזו המקובלת בטופולוגיה דיפרנציאלית עבור יריעות חלקות. גם בצורה זאת יריעה תהיה מרחב טופולוגי עם מבנה נוסף, רק שמבנה זה יהיה אטלס במקום אלומת פונקציות. כל מפה באטלס תתאים לקבוצה פתוחה אפינית. דרך זאת מעלה מספר קשיים מכיוון שחיתוך של שתי קבוצות אפיניות איננה בהכרח אפיניות, פונקציות המעבר הן בין קבוצות לא אפיניות. לכן יש צורך להגדיר מורפיזמים של קבוצות קוואזי-אפיניות לפני שמגדירים יריעה כללית. מסיבה זאת ומסיבות היסטוריות דרך הגדרה זאת איננה פופולרית.

כמקרה פרטי של סכמות

[עריכת קוד מקור | עריכה]

מנקודת מבט מודרנית ניתן לראות ביריעות אלגבריות מקרה פרטי של סכמות. נקודת מבט זאת מולידה הגדרה אלטרנטיבית של יריעות אלגבריות: יריעה אלגברית היא סכמה המקיימת תכונות מסוימות (מצומצמת ומטיפוס סופי מעל ). מצב זה עלול ליצור בלבול, מכיוון שההגדרה המקובלת של סכמה גם כן מבוססת על מושג המרחב הטופולוגי: סכמה היא מרחב טופולוגי עם מבנה נוסף. אולם המרחב הטופולוגי המתאים ליריעה שונה מהמרחב הטופולוגי המתאים ל- כאשר חושבים עליה כעל סכמה. לדוגמה אם איננה מממד אז המרחב הטופולוגי המתאים אליה כסכמה אינו מקיים את אקסיומת ההפרדה .

בלבול זה גורם בתורו לבלבול בהגדרת מושג הספקטרום. עבור כל k-אלגברה קומוטטיבית עם יחידה נוצרת סופית וללא נילפוטנטים קיימת ויחידה (עד כדי איזומורפיזם קנוני) יריעה אלגברית אפינית כך ש: . יריעה זאת נקראת . כאמור המרחב הטופולוגי המתאים ליריעה זאת תלוי בשאלה האם אנו חושבים עליה כעל יריעה או סכמה. לכן כדי למנוע בלבול זה, אם רוצים לחשוב עליה כעל יריעה מסמנים את המרחב הטופולוגי המתאים ב ואם רוצים לחשוב עליה כעל סכמה מסמנים . האות באה מהעוֹבדה שיש התאמה בין הנקודות של לאידיאלים מקסימליים ב- והאות באה מהעוֹבדה שיש התאמה בין הנקודות של