אלגברת הקווטרניונים של המילטון

במתמטיקה, אלגברת הקווטרניונים של המילטון, המסומנת , היא מבנה אלגברי שאבריו הם מספרים מהצורה כאשר הם מספרים ממשיים, ו- מקיימים: . זוהי אלגברת קווטרניונים שמרכזה הוא שדה המספרים הממשיים. את המבנה גילה ב-1843 המתמטיקאי האירי ויליאם רואן המילטון, אשר חיפש דרך לייצג נקודות במרחב בדרך המאפשרת לבצע על הנקודות פעולות חיבור וכפל, לפני המצאת הווקטור.

הקווטרניונים הם הרחבה של שדה המספרים המרוכבים לארבעה ממדים.

שלט המדווח על גילויו של המילטון על גשר ברום

מספרים מרוכבים שימשו לייצוג נקודות במישור הדו-ממדי באופן המאפשר ביצוע פעולות חיבור וכפל, והמילטון חיפש דרך לייצג באופן דומה נקודות במרחב התלת-ממדי. ניסיונות אלו כשלו, אולם הרחבה למרחב של ארבעה ממדים נמצאה בדמות הקווטרניונים. השימוש בקווטרניונים חייב את נטישת חוק החילוף, דבר שהיה מהפכני באותם ימים. בהמשך, פותחו הווקטור והמטריצה והשימוש בקווטרניונים לצורכי הצגה גרפית דעך. עם זאת, עדיין קיימים שימושים בקווטרניונים, למשל בגרפיקת תלת־ממד.

הקווטרניונים הומצאו על ידי המתמטיקאי האירי ויליאם רואן המילטון ופורסמו על ידו בשנת 1843.[1] קדמו לגילוי של המילטון זהות סכום ארבעת הריבועים של אוילר משנת 1748, ונוסחת אוילר-רודריגז לתיאור סיבובים משנת 1840 שמכילה למעשה את עיקר התיאור של הקווטרניונים. קרל פרידריך גאוס הציג את הנוסחאות לכפל קווטרניונים ברשימה קצרה מ-1819 תחת הכותרת "Mutationen des Raumes", שלא פורסמה עד אחרי מותו.

המילטון שאב השראה מההקבלה בין מספרים מרוכבים לבין נקודות על מישור דו-ממדי. ההקבלה מבוססת על כך שמספר מרוכב ניתן לכתוב בתור: ואותו ניתן לייחס לנקודה שהקורדינטות שלה הם (x,y). באופן דומה ניתן לתאר פעולות גאומטריות באמצעות פעולות אלגבריות על מספרים מרוכבים. לדוגמה סיבוב של נקודה בזווית מתבצעת על ידי הכפלה: . בהתבסס על הקבלה זאת חיפש המילטון הכללה של המספרים המרוכבים שתאפשר לתאר גאומטריה תלת-ממדית. חיפושיו של המילטון לנוסחה שתאפשר הכפלה של שלשות מספרים עלו בתוהו. ב-16 באוקטובר 1843, בעת טיול עם אשתו לאורך התעלה המלכותית בדבלין, בעת שהשניים עברו בסמוך לגשר ברום (Brougham Bridge) מצא המילטון את הבסיס לנוסחת הכפל של רביעיות מספרים. התלהבותו של המילטון מהתגלית הייתה כה גדולה עד כי, במעשה שכונה מאוחר יותר 'אקט של ואנדליזם מתמטי', הוא חרט על הגשר את הנוסחה הבסיסית לכפל קווטרניונים: . המילטון כינה את המספרים שגילה בשם 'קווטרניונים' והקדיש למחקר וההפצה של הרעיון את שארית חייו. ספרו האחרון והארוך ביותר של המילטון 'יסודות הקווטרניונים' התפרסם לאחר מותו, ב-1863.

תלמידיו וממשיכי דרכו של המילטון, פיטר טייט ובנג'מין פירס הרחיבו על האופן שבו ניתן להשתמש בקווטרניונים לתיאור פרקים בגאומטריה ובפיזיקה. כך לדוגמה הם הראו שאת משוואות מקסוול ניתן לכתוב באופן פשוט באמצעות קווטרניונים. בסוף שנות ה-80 של המאה ה-19 התנהל ויכוח מדעי ער בין התומכים בשימוש בקווטרניונים לתיאור גאומטריה תלת-ממדית, לבין התומכים בשימוש באנליזה וקטורית. בין היתר בזכות תמיכתם של פיזיקאים ומתמטיקאים כמו ג'וסיה וילארד גיבס ואוליבר הביסייד הפך השימוש באנליזה וקטורית למקובל על הרוב המכריע של הקהילה המדעית. תמיכה זאת נבעה בין היתר מכך שתיאור של גאומטריה אלגברית על ידי וקטורים נחשבה לפשוטה ואינטואיטיבית יותר, ומשום שהיא ניתנת להכללה לכל מספר שהוא של ממדים.

לקראת סוף המאה ה-20 החל מתגבר השימוש בקווטרניונים לתיאור מצב זוויתי וסיבובים כתחליף לשימוש בזוויות אוילר. זאת נעשה במגוון תחומים כגון: ניווט, גרפיקה ממוחשבת, אווירודינמיקה, תורת הבקרה, עיבוד אותות, פיזיקה וביואינפורמטיקה. משחק המחשב טומב ריידר משנת 1996 נחשב למשחק המסחרי הראשון שהמנוע הגרפי שלו מבוסס על קווטרניונים, והיום נעשה בקווטרניונים שימוש במרבית משחקי המחשב המסחריים. כמו כן, במערכות טוס על חוט (fly by wire) המשמשות לבקרת גובה במטוסים בעלי יציבות אווירודינמית שלילית, הפקודות לייצוב האווירודינמי של המטוס נשלחות כקווטרניונים (קווטרניון כל חלקיק שנייה).

תכונות בסיסיות

[עריכת קוד מקור | עריכה]

מתוך השוויון נובעים השוויונות הבאים:

, אבל ;
, אבל ;
, אבל .

קווטרניונים אלה יוצרים את חבורת הקווטרניונים. כאמצעי עזר חזותי לזכירת כללי הכפל של הקווטרניונים ניתן להציב את במעגל באופן כזה שהמעבר מכל קווטרניון יסודי לקווטרניון היסודי הבא מתבצע בכיוון השעון. לאור הבנייה הזאת, כפל קווטרניונים יסודיים מתבצע בצורה הבאה: כפל של כל שניים מהם ייתן את השלישי, עם סימן חיובי כאשר האיבר הימני נמצא צעד אחד בכיוון השעון ביחס לאיבר השמאלי, ועם סימן שלילי כאשר ההפך הוא הנכון.

החיבור של שני קווטרניונים הוא: .

הכפל מתקבל לאחר פתיחת הסוגריים ושימוש בזהויות שלעיל. תחת פעולות אלה של חיבור וכפל, הקווטרניונים מהווים חוג. באופן מפתיע, לכל קווטרניון (פרט לקווטרניון האפס) יש איבר הפכי, ומה שמונע מהקווטרניונים להיות שדה הוא דווקא אי-קיום תכונת הקומוטטיביות (חילופיות): עבור קווטרניונים , בדרך כלל .

באנלוגיה למספרים מרוכבים, מגדירים צמוד של קווטרניון: - וערך מוחלט של קווטרניון: . בהתאם לזהות ארבעת הריבועים, .

ייצוג מטריציוני וקטורי

[עריכת קוד מקור | עריכה]

דרך אחרת לייצג קווטרניונים היא בייצוג מטריציוני:

.

במקרה זה, החיבור והכפל של שני קווטרניונים נעשים לפי הכללים של חיבור וכפל מטריצות.

דרך נוספת להצגת קווטרניונים היא כזוג סדור של סקלר ווקטור תלת-ממדי: . במקרה זה, פעולות החיבור והכפל הן:

1.

2. - כפל גרסמן.

מכאן רואים את הסיבה לאי-חילופיות הכפל בקווטרניונים - אי-חילופיות המכפלה הווקטורית.

כמו-כן מנוסחה זו נובעות הזהויות הבאות:

א.

ב.

ג. - מזהות זו נגזרו מאוחר יותר הגדרות המכפלה הסקלרית

והמכפלה הווקטורית.

הקווטרניונים ממלאים את יעודם המקורי, לסובב את המרחב התלת-ממדי, על ידי פעולת ההצמדה: החבורה של הקווטרניונים מנורמה 1 פועלת על ידי הצמדה על תת-המרחב התלת-ממדי ; פעולה זו מגדירה איזומורפיזם לחבורת הסיבובים (שהיא חבורת המטריצות האורתוגונליות בעלות דטרמיננטה 1).

קווטרניונים שלמים

[עריכת קוד מקור | עריכה]

אוסף הקווטרניונים מהצורה עבור נקרא מסדר ליפשיץ ואילו האוסף הכולל את אלו יחד עם הקווטרניונים שבהם נקרא מסדר הורוויץ. מסדר הורוויץ מהווה מסדר מקסימלי יחיד (עד כדי הצמדה) באלגברת הקווטרניונים הרציונליים , והוא אוקלידי (מימין ומשמאל) ביחס לפונקציית הנורמה. אפשר להיעזר בכך כדי לקבל הוכחה קלה למשפט ארבעת הריבועים של לגרנז'. מסדר ליפשיץ הוא "כמעט אוקלידי": אפשר לחלק כל בכל בכל עם שארית r המקיימת .

אינווריאנטים מקומיים

[עריכת קוד מקור | עריכה]

אלגברת הקווטרניונים של המילטון מתפצלת בכל השלמה של המספרים הרציונליים, פרט ל- ו- .

קישורים חיצוניים

[עריכת קוד מקור | עריכה]

הערות שוליים

[עריכת קוד מקור | עריכה]
  1. ^ On Quaternions; or on a new System of Imaginaries in Algebra (מכתב ל-John T. Graves, מ-17 באוקטובר 1843)