Числа Якобсталя
Числа Якобсталя — цілочисельна послідовність, названа на честь німецького математика Е. Е. Якобсталя[ru].
Як і числа Фібоначчі, числа Якобсталя — одна з послідовностей Люка
для якої P = 1 і Q = −2[1]. Послідовність починається з чисел[1][2]
- 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10 923, 21 845, 43 691, 87 381, 174 763, 349 525, …
Числа Якобсталя визначаються рекурентним відношенням[1][2]
Інші варіанти рекурентного задання послідовності[2]:
Число Якобсталя за заданим номером можна обчислити за формулою[1][2]
Числа Якобсталя — Люка являють собою послідовність Люка . Вони задовольняють тим самим рекурентним співвідношенням, що й числа Якобсталя, але відрізняються початковими значеннями[1]:
Альтернативна формула[3]:
Число Якобсталя — Люка за заданим номером можна обчислити за формулою[3]
Послідовність Якобсталя — Люка починається числами[1][3]
- 2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16 385, 32 767, 65 537, 131 071, 262 145, 524 287, 1 048 577, ….
- A. F. Horadam (1994-05). Jacobsthal representation numbers (PDF) (англ.).
- Paul Barry (2003-04). Triangle Geometry and Jacobsthal Numbers (PDF) (англ.). Irish Math. Soc. Bulletin.
- Zvonko Čerin (2007). Sums of Squares and Products of Jacobsthal Numbers (PDF) (англ.). Т. 10. Journal of Integer Sequences.
- послідовність A001045 з Онлайн енциклопедії послідовностей цілих чисел, OEIS - числа Якобсталя
- послідовність A049883 з Онлайн енциклопедії послідовностей цілих чисел, OEIS - прості числа Якобсталя